
  JScholar Publishers                  

Journal of
Animal Biology and Veterinary Medicine

©2022 Th e Authors. Published by the JScholar under the terms of the Crea-
tive Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and 
source are credited.

 
 J Anim Biol Vet Sci 2022 | Vol 1: 105

Research Article Open Access

Aflatoxin B1: Mechanism, Oxidative Stress and Effects on Animal Health

Seval YILMAZ* and Hakan BAG

Firat University Veterinary Faculty Biochemistry Department, 23200, Elazig, Turkey

Citation: Seval YILMAZ, Hakan BAG (2022) Afl atoxin B1: Mechanism, Oxidative Stress and Eff ects on Animal Health. J Anim 
Biol Vet 1: 1-16

Received Date:  September  11, 2022   Accepted Date:  October 11, 2022    Published Date:  October 14, 2022

*Corresponding author: Seval Yilmaz, Firat University Veterinary Faculty Biochemistry Department, Elazıg. +90 536 353 32 28, 
E-mail: sevyilars@yahoo.com

Abstract

Afl atoxins (AFs) are secondary fungal metabolites also known as mycotoxins which are produced by fungi of the Aspergillus 
genus, particularly Aspergillus fl avus. the most common type of AF are AFB1, AFB2, AFG1, AFG1, AFM1 and AFM2. AFs 
are known to contaminate a large portion of the world's food supply.

AFB1 is the most carcinogenic of AF. AFB1 contamination of agricultural commodities poses a considerable risk to human 
and livestock health and high economic losses occur in the country crops and animals. Human exposure to AF leads to a va-
riety of health-related disorders, including acute and chronic afl atoxicosis, immunosuppression, liver cirrhosis, liver cancer, 
growth retardation, and others.

One of the causes of AFB1-induced toxicity is oxidative stress, which leads to the improved generation of reactive oxygen 
species and oxidative DNA damage. Th ese radicals initiate a damaging process in biological systems.

Th is review relates the metabolic transformation of AFB1, its mechanism of oxidative stress, and its eff ects on animal health
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Introduction

 Molds, which are common in our daily life and can re-
produce in almost all kinds of foodstuffs, have been a research 
topic that has been emphasized in recent years. Molds that grow 
in raw and processed materials under suitable conditions cause 
deterioration of the product by changing its quality and quantity, 
on the other hand, they create toxic substances harmful to hu-
man and animal health [1].

 Aflatoxins (AFs) are various toxic carcinogens and mu-
tagens produced by certain molds, especially Aspergillus species. 
The synthesis of AFs, which are mycotoxins that contaminate 
feed and food, depends on mechanisms triggered in response to 

environmental stimuli such as pH, light, food sources, and oxi-
dative stress [2,3].

 There are more than 20 derivatives of AF produced 
by different types of fungi. For example, Aspergillus flavus can 
synthesize AFB1 and AFB2, while Aspergillus parasiticus can 
synthesize AFB1, AFB2, AFG1 and AFG2.  AFB1=AFM1>AF-
G1>AFB2=AFM2>AFG2 from strongest to weakest in terms of 
toxicity (Figure 1). The potency of AFB2 is only 1-10% of AFB1; 
this is related to the conversion of ingested AFB2 to AFB1 and 
then to active metabolites in the body. AFB1 is the most com-
mon in food and among the most potent genotoxic and carcino-
genic AFs. AFM1 is a major metabolite of AFB1 in humans and 
animals, which may be present in milk from animals fed with 
AFB1 contaminated feed [1,3,4].

 AFs often contaminate various staple foods such as 
straw, wheat, rice, maize, sorghum, millet, peanuts, capsicum, 
cottonseed, tree nuts, sesame seeds and sunflower seeds during 
storage and poor processing conditions. Fungal growth can oc-
cur on food at any point in the pre or post-harvest stage, making 
it difficult to control contamination [5]. Humans and animals are 
exposed to carcinogenic AFs through contaminated food, feed, 
drinking water, and air. AFs not only contaminate foodstuffs, but 
are also found in edible tissues, eggs and milk when contaminat-
ed feed is consumed by animals. Farmers and other agricultural 
workers can be exposed to breathing dust generated during the 
transport and processing of contaminated crops and feeds [6,7].

 AFB1 is of great concern worldwide due to its proven 
carcinogenic properties in humans and its toxic effects due to its 
frequent occurrence in many foodstuffs. Among all AFs, AFB1 
is highly toxic, mutagenic and carcinogenic to many species, 
including humans, pigs, birds, fish and rodents. AFB1 has been 
classified as a group I human carcinogen by the International 
Agency for Research on Cancer (1, 2). Studies have shown that 
chronic exposure to AFB1 can lead to numerous diseases in hu-
mans and animals, including immunosuppression, nutrient mal-
absorption, infertility, endocrine problems, as well as teratogenic 
effects associated with congenital malformations and hepatocel-
lular carcinoma. AFB1 causes chromosomal aberrations, micro-
nuclei, sister chromatid exchange, chromosomal strand breaks, 
and inserts in fish, birds, and mammalian cells [3,8,9].

Figure 1: Chemical structure of AF’s (3)
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Biotransformation, Toxicity And Mechanisms of Action 
Of Aflatoxins

 AFs are highly liposoluble compounds. AFs are readily 
absorbed from the site of exposure usually through the gastroin-
testinal tract and respiratory tract into the bloodstream. Humans 
and animals get exposed to AFs by two major routes: ‘direct inges-
tion of AF-contaminated foods or ingestion of AFs carried over 
from feed into milk and milk products like cheese as well as other 
animal tissues’ ‘by inhalation of dust particles of AFs especially 
AFB1 in contaminated foods in industries and factories. AFs are 
absorbed through cell membranes after entering the body [3,10].

 AFs undergo biotransformation mainly in the liver. Liver 
biotransformation of AFB1 is related to its toxic and carcinogenic 
effects. When AFB1 is taken with food and feed, it is rapidly ab-
sorbed from the digestive system, binds to serum albumins, passes 
into the portal circulation and is transported to hepatocytes [11,12]. 
Orally ingested AFB1 is metabolized in the liver by the action of 
the cellular cytochrome P450 (CYP450) enzyme system and aryl 
hydrocarbon hydroxylase enzyme, forming reactive intermediates 
such as lipid peroxidation (LPO) and AFB1-8,9-epoxide, which 
cause cellular injury. Epoxidation of AFB1 to exo-8,9-epoxide is a 
critical step in the genotoxic pathway of the carcinogen [13,14].

There are Two Types of Biotransformation: Phase I and 
Phase II.

 Phase I: Phase I is mostly mediated by CYP450 enzyme 
systems. AFB1 is oxidized to various products by CYP450 sub-

families and specific isoforms of enzymes. Only one of these, the 
AFB1-8,9-epoxide, appears to be mutagenic and the others are 
detoxification products. The putative AFB-8,9- epoxide is gen-
erally considered to be the active electrophilic form of AFB1 
that can attack nucleophilic nitrogen, oxygen, and sulfur het-
eroatoms in cellular components. CYP450-mediated oxidation 
to the highly reactive AFB1-8,9-epoxide is considered the pri-
mary bioactivation pathway for AFB1. This conversion of AFB1 
to epoxide is the reaction step that enables covalent binding to 
cellular macromolecules (eg. DNA and/or protein) to occur. This 
reaction may involve several CYP450 isozymes, including 1A2 
and 3A4. The CYP450 3A4 enzyme, which can both activate 
and detoxify AFB1, is present in the liver and small intestines. 
CYP450 3A4 and CYP450 1A2 enzymes catalyze the biotransfor-
mation of highly reactive AFB1 (in exo-8,9-epoxide) [7,14,15]. 
AFB1-exo-8,9-epoxide is highly unstable and elicits the biolog-
ical effects of AF, especially with its covalent binding affinity 
to cellular macromolecules such as DNA. This highly reactive 
AFB1-8,9-epoxide substance makes changes in DNA by adding 
DNA bases, especially to the N7 position of guanine. It is thought 
that AFB1-N7-guanine, which binds to DNA, has an important 
role in the carcinogenic and mutagenic effect. Another reason for 
DNA damage is the formation of reactive oxygen species (ROS), 
which provide oxidation of DNA bases. These free radicals cause 
damage to chromosomes. Superoxide radical (O2

._), hydrogen 
peroxide (H2O2) and hydroxyl radicals (.OH) are formed from 
ROS in cells. LPO and oxidative DNA damage indicate the pres-
ence of AFB1-mediated toxicity (Figure 2) [14,16-18].

Figure 2: Schematic representation of AFB1's relationship with ROS and the occurrence of cancer [36]
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 Phase II: Some of the oxidative metabolism products 
of AFB1 form a substrate for phase II detoxification enzymes. 
Phase II reactions leading to AF detoxification include conjuga-
tion with glucuronic acid, sulfate, and GSH. AFB1 metabolites 
of phase I metabolism undergo phase II enzymatic metabolite 
mainly by glutathione-S-transferases (GST), which catalyze 
conjugation reactions [3]. After a phase I oxidation, AF can be 
easily conjugated with SH groups (in phase II reactions) allow-
ing further detoxification and elimination of the toxin [15, 19]. 
AFB1-8,9 exo and endo-epoxides can neutralize the toxic power 
of AFB1-8,9-epoxide by conjugating AFB1-8,9-epoxide to GSH 

as a result of the formation of AFB-mercapturic by conjugation 
with GSH as a result of reactions catalyzed by the GST enzyme 
in the liver. GSH plays an important role in the detoxification of 
AFB1. Low GSH levels can increase the toxic effects of AFB1. 
However, in the case of long-term and excessive intake of AFB1, 
the detoxification function will be insufficient and serious health 
problems may be observed (Figure 3). Monkeys are more re-
sistant to AF carcinogenesis as GST activity is 3-5 times higher 
in monkeys than in rats. In humans with lower GST activity or 
AFB1-8,9-epoxide conjugation, AF detoxification is less effective 
than in rats and monkeys [3,7].
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 AFB1 is also metabolized into several hydroxylation 
products through the CYP450 system. These include AFM1, 
AFQ1 and AFP1. AFM1 is a major metabolite produced by 
CYP1A5 and is commonly detected in humans and animals ex-
posed to AFB1. AFM1 is the most carcinogenic of the hydrox-
ylated metabolites which have been shown to induce tumors in 
rainbow trout and rats (20, 21). This is supported by the DNA 

binding effect of AFM1 which has been demonstrated in rats, 
mice, and pig and has even been identified to form N7 guanine 
adducts similarly to AFB1 [22,23]. AFM1 is commonly found in 
the milk of dairy cattle and humans, leading to many potential 
routes of dietary exposure.AFM1 is also excreted in high levels 
in urine following AFB1 exposure and thus has to become an 
additional biomarker of AFB1exposure (Figure 4) [24, 25].

Figure 3: Effects of AFB1. AFB1 reacts with DNA, RNA, proteins and other compounds to form adducts. 

These AFB1 adducts cause many genetic mutations and epigenetic alterations leading to the deregulation 

of many cellular metabolic pathways affecting the growth and normal functioning of cells [63]
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Aflatoxin B1 and Oxidative Stress

 AFB1 causes an increase in ROS that leaves cells vul-
nerable to nucleic acids, proteins or lipid oxidation [26-28]. The 
effects of AFB1 toxicity on the formation of AFB1-8,9-epoxide 
in the liver and O2

.−, .OH. It has been reported to occur with 
the formation of intracellular ROS such as AFB1-8,9-epoxide 
has been shown to increase LPO, followed by loss of membrane 
stability and blockade of membrane-bound enzyme activity [28-
30]. Thanks to its capacity to generate ROS, AFB1 can promote 
ROS-mediated oxidative damage to proteins. At the same time, 
AFB1 can inhibit some (serine) proteolytic enzymes responsible 
for the degradation of damaged proteins and consequently may 
have relevant implications in hepatocarcinogenesis [7,31,32]. 
In studies on rats and other animals, AFB1 has been shown to 
cause changes in oxidative stress markers in biological materials 
[7,28,33-37]. AFB1 reacts with DNA, proteins and lipids, which 
cause mutations in the structure of DNA, especially .OH, which 
binds to the structure of proteins and triggers structural changes 
in proteins, thus oxidation of proteins and LPO [28,33,34,35,37]. 
AFB1 toxicity causes a significant increase in LPO, enzymat-
ic (glucose-6-phosphate dehydrogenase (G6PD), glutathione 

peroxidase (GSH-Px) and glutathione reductase (GR), catalase 
(CAT) superoxide dismutase (SOD) and GST) and non-enzy-
matic antioxidants involved in antioxidant defense (GSH, vita-
min C and vitamin E) changes accompanied by a decrease were 
observed [34,38,39,40]. 

Role of Aflatoxins in Hepatic Injury and Other Organs

 As one of the most potent hepatocarcinogens, AFB1 is a 
major contributor to the worldwide occurrence of hepatocellular 
carcinoma (HCC). Because human exposure to AF occurs so fre-
quently, chronic liver damage occurs due to the ingestion of this 
toxin. AFs have been reported to cause liver cirrhosis as well as 
liver cancers [5].  In studies where different doses of AFB1 were 
applied, MDA levels, which are indicators of LPO, increased 
significantly and decreased antioxidant activities such as GSH, 
GST, CAT, GSH-Px, SOD and G6PD have been reported in rat 
liver, kidney and heart tissues. Table 1 shows that lycopene, vita-
min E (α tocopherol)and propolis have protective effects against 
AFB1-induced hepatotoxicity, nephrotoxicity and cardiotoxicity 
[7,13,17,18].

Figure 4: AFB1 biotransformation pathways [64]
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Table 1: The effects of lycopene, Vitamin E and propolis in experimental studies using 

AFB1 at different concentrations. Data Sources in the Table [7,13,17,18]
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 One of the most common mutations found in human 
hepatocytes exposed to AFB1 is a G→T transversion on codon 
249 of the p53 gene causing a 249Arginine →249 Serin of the p53 
protein [11,41,42]. As a tumor suppressor protein, p53 regulates 
many cellular functions such as cell cycle progression, DNA re-
pair, apoptosis, and autophagy [43]. Many cancers, including 
HCC, have mutations of p53, which is thought to alter tumor 
suppressive functions, allowing the damaged cells to be come 
cancerous [44].

Health Effects of Aflatoxins on Human and Live-
stock (Aflatoxicosis)

 AFB1 present in livestock feed causes different prob-
lems in genital, digestive and respiratory tracts through different 
mechanisms such as interference in the metabolism of carbo-
hydrates, fats and DNA. Effects of AFB1 on livestock vary with 
concentration and time duration of contact with feed, the toxin 
and strain. High concentrations of AF are lethal, medial con-
centrations lead to chronic poisoning and continuous exposure 
to a low concentration can result in hepatic cancer.  Exposure 
to AFB1 with food suppresses the immune system in animals, 
leading to increased susceptibility to infections. In addition, ex-
posure to riboflavin and light increases toxicity in vitamin B12, 
carotene and protein deficiency [45,46].

Affected Rates of Aflatoxins by Animal Species

 Table 2 shows the susceptibility of different animals to 
AF’s. The effects of AF depend on genetic factors (species, breed 

strain); physiological factors (age, nutrition, exercise); and en-
vironmental factors (climatic, husbandry, housing). Developing 
fetuses are very susceptible to even low levels, and young and 
fast-growing animals are more affected than adults. Males are 
more susceptible than females. One measurement of the toxicity 
of poison is the LD50. This is the amount of toxin that will kill 
50 percent of the animals exposed to it.  This data provides an 
approximate yardstick of which animals are most vulnerable to 
AFB1 [47].
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Species LD50 (mg/kg)

Rabbit 0.3-0.5

Cat 0.55
Dog 1
Sheep 2
Calf 1.5
Guinea pig 1.4-2
Chicken (21days) 18
Turkey (15 days) 3.2
Ducklings (cubs) 0.3-0.6
Rat
Newborn Rat
Weaned Rat

9
1.5
7.3

Male Monkey
Macaque, Female

2.2
8

Pig 0.62

Table 2: AFB1 LD50 values   by species
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 Acceptablelim of AFB1 in foods in tended for human 
consumption range from appr o ximately 0-40 parts perbillion 
(ppb) whereas levels in animal feed are allowed to be much high-
er, reaching upwards of 300 ppb. Generally tolerable feed AF lev-
els are ≤50 ppb in young birds, ≤100 ppb in adult birds, <100 ppb 
in calves, and <300 ppb in cattle. Even when the level of AFs in 
feed is as low as 10-20 ppb, their metabolites (AFM1 and AFM2) 
excreted in milk are measurable; therefore, feed raw materials 
containing AF should not be fed to dairy cattle. For AFM1, max-
imum allowable levels range between 0.02 and 5 ppb, with 0.05 
ppb the most common. However, AFs in milk are of concern be-
cause milk consumption is often higher among infants and chil-
dren, who are also more vulnerable [48-50].

 AF in poultry feed can produce the metabolite aflatoxin 
in eggs. AFs may be carried over from feed to eggs at ratios of 
5.000-125.000:1 diet to egg ratio. AFB1 was detected at levels of 
0.05 to 0.16 ppb (mean 10 ppb) in eggs from hens on the 500 ppb 
diet [51,52].

Aflatoxin Sensitivities of Animals and Aflatoxins in An-
imal Source Foods

 AFs and their metabolites are present in the animal 
source. Given relatively low quantities of animal source food 
consumed, meat and eggs are unlikely to present a major contri-
bution to the overall consumption of AF in the diet. AF may also 
be present in yogurt and other dairy products. Recent studies 
have shown that other toxic metabolites (aflatoxin) can also be 
significantly excreted in AFs excreted in milk, eggs, urine, se-
men, bile and fecal milk [53, 54].

 The effects of AFs on farm animals depend on many 
factors such as animal type, sex, breed, age, type and amount of 
toxin ingested, exposure time, and stress factors. Animals such 
as duck, trout, cat, dog and turkey are most susceptible; animals 
such as horses, cattle, sheep, goats, rats, guinea pigs and quail are 
moderately susceptible; mice and monkeys are known as the least 
sensitive animals. AF contaminations lead to a decrease in feed 
quality and problems such as a decrease in the utilization rate of 
nutrients or reproductive abnormalities, resulting in low yields 
in animals. Intoxication of farm animals as a result of natural 
contamination in feed has great economic importance. Pig, cattle 
and livestock are domesticated species with significant economic 

losses in factors such as immunity, decrease in live weight gain, 
nutritional deficiency and production in general, and it is report-
ed that the poultry sector is more affected by aflatoxicosis. While 
monkeys and humans are more sensitive to acute poisonings and 
partially more resistant to carcinogenic effects; In animals such 
as rats, the situation is reversed. Horses are more susceptible to 
AF than ruminants [54,55].

 Dairy cattle, calves and pregnant animals are highly 
susceptible to AF, and in the rumen of ruminants AFs are de-
graded at a low rate and converted to aflatoxicol, which is less 
toxic than the parent compound. Only 10% of the parent com-
pound is degraded to aflatoxin. AFs generally cause chronic poi-
soning in cattle. In chronic aflatoxicosis cases, jaundice, loss of 
appetite, hair growth, decrease in feed consumption and feed ef-
ficiency, decrease in milk yield and abortion are seen. The most 
important symptom of chronic aflatoxicosis cases is a regression 
in growth. The reason for this is disorders in protein, carbohy-
drate and fat metabolism. In addition, AFs cause disturbances 
in rumen functions such as digestion of cellulose, production of 
volatile fatty acids and decrease in motility in ruminants. AFs 
suppress the immune system in chronic poisonings and lead to 
the emergence of many diseases [56]. It has been stated that 100 
µg/kg AF given with feed reduces milk yield and 120 µg/kg AF 
reduces fertility. Most AFs consumed by dairy cows are degraded 
by the microbial flora in the cow’s rumen. AFs are also eliminat-
ed through urine and feces. However, a small amount of AFB1 
is metabolized to AFM1 in the liver and excreted in the milk of 
dairy cows. The amount of AFM1 excreted in milk is only around 
1-2 percent of the total amount of AFB1 ingested. This metabo-
lite has been estimated to have around 3 percent of the mutagen-
icity of AFB1, however, it is still toxic, and its potential to inflict 
chronic disease has not been evaluated. When AFB1 is given by 
adding 1-3% to cattle feed, approximately 1.7% is extracted as 
AFM1 with milk. It has been reported that AF was detected in 
milk within 24 hours after consumption of feed containing AF. 
It was stated that AF excretion in milk ceased within 2-3 days 
after feeding was stopped [57]. gave 0.35 mg/kg AFB1 to dairy 
cattle for 3 days and detected 0.1 µg/kg AFM1 in milk. Holstein 
cattle 13 mg/bovine AFB1 orally for 7 days and stated that they 
found AFM1 between 1.05-10.58 ng/l in their milk. The amount 
of AFM1 allowed in milk in Turkey is 50 ng/l (Figure 5) [20,58].
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 AFs have proven negative impacts on animal health.  
Death from poisoning if large amounts are consumed (aflatox-
icosis), decrease in productivity when lower amounts are con-
sumed, cancers in some animals, immunosuppression predis-
posing to infectious diseases, vaccine failure due to inadequate 
immune response. The most important economic losses are ex-
perienced in the poultry sector, as poultry is highly susceptible 
to AFs [59]. Comparative toxicological studies in poultry species 
have shown that ducks and turkeys are the most susceptible to 
AF, quails are moderately susceptible, and chickens are the most 
resistant. In chickens, inhibition of DNA biosynthesis is more 
effective because reactive metabolites and metabolic activation 
are formed more effectively in the liver [60]. The presence of 
AFB1 in the poultry diet stimulates the production of CYPP450 
isoenzymes, thereby making AFB1 AFBO; It converts AFB1 to 
the more toxic form AFB1-8.9-epoxide, causing oxidative dam-
age and organ failure, low productivity, reduced reproductive 
performance, high susceptibility to diseases and accumulation 
of AFB1 in eggs and meat, which can be harmful to consumers' 
health. AFB1 affects the accumulation of carotenoids in chicken 
tissues. In poultry, aflatoxicosis also causes fatigue, loss of appe-
tite, decreased growth, feed efficiency and egg production, and 
increased mortality. They also cause a decrease in body weight, 

suppression of the immune system, liver dysfunction and disor-
ders in blood coagulation. AFB1 reduced jejunal mucosa lutein 
content by 35% and serum lutein content by 70% in young birds; 
This suggests that AFB1 inhibits the absorption, transport and 
storage of carotenoids. It has been reported that many deaths in 
waterfowl are due to acute aflatoxicosis [3,55,61].

 In case of AFs, the 3-(4,5-dimethylthiazol-2-yl)-2,5-di-
phenyltetrazolium bromide (MTT) was the most frequently used 
test, followed by, the lactate dehydrogenase (LDH) release and 
the neutral red uptake (NRU), while HepG-2 and Caco-2 were 
the most frequently used cell lines. Results showed a decrease 
in cells’ viability, as well as increase in the apoptotic cell ratio, 
increased ROS production and cell cycle arrest. IC50 values for 
aflatoxins range from nM to µM, depending on experiment con-
ditions, time of incubation and cell line used (full results are pre-
sented in Table 3).

 The European Union (EU) maximum levels (MLs) for 
food-crops are listed in Table 4.  For the sum of T-2 and HT-2, 
the EC prescribes indicative levels for cereals and cereal products 
[62] (Table 4).

Figure 5: The metabolism and biotransformation pathways of AFB1 in lactating dairy cattle. AFB1 ¼ aflatoxin B1; 

AFBO ¼ AFB1-8,9-epoxide (highly toxic, mutagenic, and carcinogenic); AFB1-GSH ¼ aflatoxin glutathione adduc-

tion; AFL ¼ aflatoxicol; AFM1 ¼ AFM1 (highly toxic and excreted in milk); AFP1 ¼ AFP1; AFQ1 ¼ AFQ1 [65]
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Type of Test Cell Line Results Reference

CCK-8 BME

Aflatoxins AFB1 and AFM1 exhibited cytotoxic properties 
in a dose- and time-dependent manner at various concen-
trations after 24 and 48 h of incubation. They also induced 
apoptosis and increased the ratio of cells in the G1 and G2 
phases.

(66)

MTT, LDH release
Caco-2, Hep-G2, 
SK-N-SH

Both aflatoxins AFB1 and AFM1 decreased the viability of 
cells by damaging the cell membrane.

(67)

MTT Caco-2
Aflatoxin AFM1 inhibited cell viability in a dose- and 
time-dependent manner after 24, 48 and 72 h of incubation.

(68)

MTT, LDH release BRL 3A
AFB1 reduced cell viability in a dose- and time-dependent 
manner. AFB1 also increased LDH activity, apoptotic cell 
ratio and ROS production.

(69)

MTT, NRU

Caco-2,

Raw264.7, 

MDBK

AFB1 exhibited cytotoxic properties against MDBK, reduc-
ing cell viability by 21% after 48 h of incubation with AFB1 
at a concentration of 3.8 µg/mL. No significant decrease in 
cell viability was observed in Raw264.7 and Caco-2 cell lines.

(70)

Cell Proliferation

 Reagent WST-1
BME-UV1

Aflatoxin B1 is cytotoxic against the BME-UV1 cell line in 
a doseand time-dependent manner, with LC50 values of 687 
and 180 nM after 24 and 48 h, respectively.

(71)

MTT, NRU BME-UV1

Aflatoxin caused a decrease in cell viability in a dose- and 
timedependent manner. NRU tests showed that after 72 h of 
incubation, cell viability was decreased by more than 70% in 
all concentrations tested. The MTT test also showed a signifi-
cant decrease in cell viability in all concentrations tested after 
24 h of incubation.

(72)

MTT Caco-2

Aflatoxin B1 and M1 exhibited cytotoxic properties against 
the Caco-2 cell line. The MTT assay showed a significant 
dose- and time-dependent decrease in cell viability, both 
differentiated and undifferentiated cells, when treated with 
mycotoxins. It was shown that aflatoxin B1 is more cytotoxic 
than aflatoxin M1.

(73)

MTT, LDH release PK-15

Aflatoxin B1 exhibited dose- and time-dependent cytotoxic 
properties. The MTT test showed that after 48 h of incuba-
tion, the IC50 for aflatoxin B1 was 38.8 µM. Regarding the 
LDH release, an AFB1 in concentration of 24.9 µM caused 
an increase in LDH release by 30% after 24 h of incubation.

(74)

Table 3: Cytotoxicity of aflatoxins tested on different cell lines
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Cell Proliferation 

ELISA BrdU Kit,

Flow cytometry

MAC-T

Incubation with AFB1 significantly decreased cell prolifera-
tion in a dose-dependent manner. Since the ratio of cells in 
sub-G1, S and G2/M phases was elevated, it was assumed that 
AFB1 inhibited cell proliferation by inhibiting the cell cycle. 
Flow cytometry also showed that incubation with AFB1 in-
duced apoptosis in MAC-T cells.

(75)

High content 

screening
BF-2

AFB1 reduced cell viability in a dose-dependent manner, 
with IC50 estimated at 11.11 µM. Moreover, AFB1 generated 
strong oxidative stress.

(76)

Cell Proliferation 
Reagent WST-1

HepG-2,

BEAS-2B

AFB1 decreased HepG-2 cell viability, with a IC50 estimated 
at 1 µM; however, after exposure of BEAS-2B cells to AFB1, 
cell viability was at 90% compared to the control group in all 
tested concentrations.

(77)

Mycotoxin Food crop
Established

levels (mg/kg)

Aflatoxins

Codex Alimentarius standard                                                                                            

Almonds, Brazil nuts, hazelnuts, peanuts, pistachios for processing

Almonds, Brazil nuts, hazelnuts, pistachios for direct human consumption

AFB1

-

-

Total

15

10

Aflatoxins

European Union maximum and guidance levels

Groundnuts (peanuts), hazelnut, Brazil nuts, other oilseeds for processing

Almonds, pistachios, apricot kernels for processing

Tree nuts, other than the tree nuts above for processing

Groundnuts (peanuts), other oilseeds, other three nuts below for direct 
human consumption

Almonds, pistachios, apricot kernels for direct human consumption

Hazelnuts and Brazil nuts for direct human consumption

All cereals except maize and rice

Maize and rice for processing

AFB1

8 

12 

5 

2 

8 

5 

2 

5 

Total

15

15

10

4

10

10

4

10

Aflatoxin B1
USA: Action and guidance levels

All food crops
20

Aflatoxins
Canada: Maximum and guidance levels

Nuts
15

Table 4: Maximum levels for most often regulated mycotoxins in food crops
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Conclusion

 AFs are toxic to humans and animals and cause differ-
ent diseases. AFs, their metabolites, the AFB1-8,9-epoxide and 
the generated ROS cacauseeleterious effects on the various body 
organs and body systems including the development of cancers 
especially the liver cancer mainly due to AFB1 exposure. AFs 
are also responsible for the suppression of both humoral and 
cell-mediated immunity and thus making individuals suscep-
tible to infectious diseases. AFs are also responsible for malab-
sorption of various nutrients and thus lead to impaired immune 
function, malnutrition and growth retardation.

 There are two main ways are usually exposed to AF. The 
first is when someone takes in a high amount of AFs in a very 
short time. This can cause liver damage, cancer, mental impair-
ment, abdominal pain and death. The other way suffers AF poi-
soning is by taking in small amounts of AFs at a time but over a 
long period. It may cause growth and development impairment, 
liver cancer, DNA and RNA mutation.

Aflatoxins
Australia: Maximum levels

Peanuts, tree nuts
15

Aflatoxin B1
Japan: Maximum and provisional maximum levels

All food crops
10

Aflatoxin B1

China: Maximum and guidance levels

Maize

Rice (brown rice)

Wheat, barley, other cereals

Peanuts

10

10

5

20
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