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Abstract

In this paper, we study a discrete predator-prey model incorporating predator cannibalism. At first the corresponding
continuous predator-prey system is simplified to obtain a new discrete system by using semidiscretiza- tion method. Next
the existence and local stability of fixed points of the new system are investigated by applying a key lemma. Then various
suffi- cient conditions for the occurrence of the transcritical bifurcation of the new system are obtained by using the center

manifold theorem and bifurcation theory. Finally, some conclusions and discussions are given for further study.
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Introduction

Predator-prey interaction is one of the most significant
phenomena among species [1]. In recent years, many mathe-
maticians and biologists have studied the dynamical behaviors
between predator and prey [1], especially using the traditional
Lotka-Volterra predator-prey model, which takes the form as
follows:

dx ® )

— =x(b — ax —my),

gt (1.1)
}, = [ —

i = y(—f + nx).

Thanks to the pioneering work of Lotka and Volterra,
the study of practical mathematical models in ecology has be-
come a hot topic that has attracted a large number of mathe-
maticians and biologists to join in. In the past few years, many
mathematicians have been involved in the dynamical behaviors
of predator-prey systems with the theory of dynamical system so

that abundent significant results have been yielded [1-6].

In the course of studying the dynamics of predator-prey
models, many scholars take into account the effect of the func-
tional response for predator to prey. Yu [7] researched the global
asymptotic stability of a predator-prey model with modified Les-
lie-Gower and Holling-II scheme:

dx ayv

a b T gD

dy ay (1.2)
a YT

in which x(t) and y(t) denote the densities of the prey
and the predator at time ¢ respectively, 71 and 72 are the growth
rate of the prey and the predator respectively, b1 measures the
strength of competition among the individuals of the prey, a;
and @z are the maximum values that per capita reduction rate of
the prey and the predator can attain respectively, k; and k2 mea-
sure the extent to which the environment provides protections to
the prey and the predator respectively [8]. In addition, Yu [7] of-
fered two sufficient conditions on the global asymptotic stability
of a positive equilibrium of the system (1.2). After that, Yue [9]
considered the dynamics of the following modified Leslie-Gower

predator-prey model with Holling-II scheme and a prey refuge:

dx b a;(1 —m)y

FTI L &l ey ey
@ (1.3)
ac T —mxt ke

where mx denotes the part of the refuge protection of
the prey, and m € [0,1). Yue [9] also found that an increase of the
amount of refuge may guarantee the coexistence and attractivity

of the two species with no difliculty.

Nowadays, cannibalism, a special phenomenon in na-
ture [10-12], has attracted scholars™ attetion, which means the
behavior of consuming the same species. Many species in biol-
ogy have the phenomenon of cannibalism. For example, some
mature organisms eat young individuals, and the stronger ones
prey on the weaker ones, etc.. Cannibalism occurs in fish, bird
and insect, such as Atlantic salmon, red backed spiders and some
copepods [10-12]. Due to the need of energy acquisition and
others, the behavior of cannibalism will be widely followed in
the whole population [10-12]. This strategy helps adult individ-
uals to preserve energy. Cannibalism of biological species will be
helpful to the sustainable survival of organisms to a certain ex-
tent. It is universally acknowledged that cannibalism has a quite

important effect on the dynamical behaviors of the species.

Scholars once used the bilinear function fxy to describe
the cannibalism (refer to [10-16] and the references therein). Till
recently the thought of the functional response of predator-prey
models was adopted [17-18], and the nonlinear cannibalism

model was then proposed.

In 2016 Basheer et al. [17] proposed the predator-prey

model with nonlinear prey cannibalism in the following form:

where x and ¥ represent the densities of prey and pred-
ator at time ¢ respectively, and the parameters ¢, €1, d, @, § and
& are nonnegetive constants. Unlike the previous works [13-16],
Basheer et al. [17] described the cannibalism in the Holling-
IT type functional response. The general cannibalism term is
Cx)=c-x -x% in the prey equation, in which ¢ is the canni-
balism rate. This term € (x) is manifestly more appropriate to the
reality of ecology and has obvious addition of energy to the can-
nibalistic prey. The addition leads to an increase in reproduction
in the prey by adding a term ¢ x to the prey equation. Apparently
c; < ¢, as the cannibals need to ingest a lot of prey to produce
a new offspring [19]. Scholars concluded that prey cannibalism
changes the dynamics of the predator-prey model. The system

(1.4) is stable without cannibalism, while it's unstable with prey
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cannibalism in the same conditions [17]. After that, Basheer et
al. [18] studied the prey-predator model with cannibalism in
both predator and prey population and got more comprehensive

results.

Model Development

In this paper, we further consider the following preda-

tor-prey model with predator cannibalism:

dx b
E—x( —ax —my),
5 (1.5)
dy_’i eyt nx)— cy
g - YCF et =g

where ¢; < c. The meanings of parameters in (1.5) are shown in
2

Table 1, and }% denotes the cannibalism of the predator. In bio-

logical sense one assumes that all the parameters are nonnegetive

constants.

Table 1: Parameters in the system (1.5) and their meanings

Parameter | Meaning

x density of the prey at time ¢

y density of the predator at time ¢

b intrinsic growth rate of the prey

a intraspecific competetion of the prey

" strength of intraspecific interaction between the prey
and the predator

B death rate of the predator

c, birth rate from the predator cannibalism

n conversion efficiency of ingested prey into new predators

Without loss of generality, we can assume m=n=1
in the system (1.5). In fact, to do this, the transformation
(nx, my, md, %) - (x,y,d,) is sufficient. That is to say, in the sequel,

we consider the dynamical properties for the following system:

dx — (b

pr x(b — ax —y),

dy cy? (1.6)
ar =y(—f+c;+x) “y¥d

In general, it is of little possiblility to obtain an exact
solution for a complex differential equation or system, so we usu-
ally derive its appropriate solution by computer. Thus we should
study the corresponding discrete model. For a given differential
system, many discretization methods can be utilized, including
Euler backward difference method, Euler forward difference
method and semidiscretization method, etc.. In this paper, we
use the semidiscretization method to derive the discrete model
of the system (1.6). For the semidiscretization method, refer also
to [20-22, 26-29].

For this purpose, firstly suppose that [t] represents the
greatest integer not exceeding t. Then consider the average rate
of change of the system (1.6) at integer number points in the fol-

lowing form:

1 d

x(0) };S:) = b — ax([t]) — y([tD.

L@ _ o oD (1.7)
yo & - Prar g

It is quite straightforward to see that piecewise con-
stant arguments occur in the system (1.7) and that any solution
Gx(0),v(t)) of (1.7) for ¢ e [0, 4o0) is in possession of the following

three characteristics:

1. x(t) and y(t) are continuous on the interval
[0, -I—oo);

dx(t) dy(t)
—ar_and Tg;  exist anywhere when ¢ € [0, +x) ex-

cept for the points ¢ € {0,123, };

3. the system (1.6) is true in each interval [nn+1)

with n=0,1,2,3, -,

The following system can be obtained by integrating
the system (1.7) over the interval [ ¢] for any ¢ € [n,n+ 1) and
n=012, -

x(t) = x, P n"In(t — n),
_ _E¥n (1.8)
(0 =yne T TR — ),

where x,, = x(n) and y, = y(n).
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Letting ¢ - (n + 1)~ in the system (1.8) leads to

— b—ax,—
Xn+1 = Xn€ non, (1.9)
E¥n '

Yntd

o —ftcytx,—
m+1 = Yn€

where all the parameters b, ¢, ¢;,d, a, f > 0.

In this paper, our main aim is to consider the dy-
namics properties of the system (1.9), primarily for its stabili-

ty and bifurcation. We always assume the space of parameters

0 ={(b,cc,dapB)ERSc,<c}

The rest of this paper is organized as follows: In Section
2, we discuss the existence and stability of the fixed points of the
system (1.9). In Section 3, we derive the sufficient conditions for
the occurence of the transcritical bifurcation of the system (1.9).
In Section 4, we make some conclusions and discussions about
the system (1.9).

Existence and Stability of Fixed Points

In this section, we first consider the existence of fixed points and
then analyze the local stability of each fixed point of the system
(1.9).

The fixed points of the system (1.9) satisfy

- -
f+ecytx v+a.

D—ax—y' V= ye

X =Xxe

Considering the biological meanings of the system
(1.9), we only take into consideration its nonnegative fixed

points. Thus, the system (1.9) has and only has four nonnegative

fixed points E,(0,0), £:,0), Ez(ovt;(:;:i b for gec,<p+e and £y
where
. —B—+VB*—4aC )
x* :T, yv'=b— ax”,

B=—-[a(f+c—c)+(b+d)] <0,

C=bB+c—c))+d(f—ci)=bc+b+d)E—cy)

for B2 = 4aC and *" <. For the existence of E*(x",¥"), one can
also refer to the discussions in its corresponding continuous sys-
tem in [19].

The Jacobian matrix of the system (1.9) at any fixed point E(x,y)

takes the following form

#20c(1 — ax)el Y —xeb®x~¥
J(E) = ye—,8+c1+x—3% [1- cdy ]g_ﬁﬂﬁx_% )
(r+d)?

The characteristic polynomial of Jacobian matrix /(E) reads

F(A) =X +PA+0Q,

where
P =—tuJ(E)=—-(1-— ax)eb_ax_y —- cdy ]e—,ﬁ+cl+x—}%
0: + d)z '
Q@ =detJ(E) ={(1 —ax)[1— i] T ,}eb—mcl—{a—l}x—y—}%
(v + d)? Y .

Before we analyze the fixed points of the system (1.9), we recall
the following lemma [20-22, 26-29].

[lem:201]Let F(A) = A2 + PA + Q, where P and @ are two
real constants. Suppose 4; and 4z are two roots of F(1) = 0. Then

the following statements hold.

() IfF(1) > 0, then

(i1 [A4] <land|A,| < 1ifand onlyif F(—1) > 0and Q < 1;
(i.2)4; =—1and A, # —1ifand onlyif F(—1) = 0and P # 2;
(i.3) |41] < 1and |4;| > 1ifand only if F(—1) < 0;

(i.4) [A1] > 1and |4,| > 1ifand only if F(—1) > 0and Q > 1;

(i.5) A1 and A, are a pair of conjugate complex roots with
il =22 =1

ifandonlyif -2 < P <2and @ = 1;
(i.6) Ay = A, = —lifandonlyif F(—1) = 0and P = 2.

(i) If F(1) = 0, namely, 1 is one root of F(A) = 0, then the

other root A
satisfies |A| = (<,>)1ifand only if |Q| = (<, >)1.

(iii) If F(1) < 0, then F(4) = 0 has one root lying in (1, o).
Moreover,

(iii. 1) the other root 4 satisfies J < (=) — 1 if and only if
F(-1) < (=)0’

(iii.2) the other root —1 < A < 1ifand only if F(—1) > 0.

For the stability of fixed points E,(0,0) El(g, 0) and

E, (0,‘;(:1_3)), we can get the following Theorems 2.2-2.4, re-
c—cy

spectively.
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[theorem:202] The following statements about the fixed
point E4(0,0) of the system (1.9) are true.

1. If 8 = ¢4, then E, is a saddle.
2. If f = ¢, then Eq is non-hyperbolic.
3. If B < ¢;, then Ej is a source.

Proof. The Jacobian matrix of the system (1.9) at the
fixed point E4(0,0) is given by

+20ce? 0
J(Eo) = (0 e_’g"'cl)'

Obviously, A =e”>1 and A, =e F*1 If B> ¢, then
|1;] < 1> so Eq is a saddle; if § = ¢, then |4;| = 1, so Ep is
non-hyperbolic; if f < ¢y, then |42] > 1, so Eq is a source. The

proof is over.

[theorem:203] The following statements about the fixed
point E, (E_ 0) of the system (1.9) are true.
a

1. IfB>ci+ g, then,

L. for b > 2, E, is a saddle;

2. for b = 2, E; is non-hyperbolic;

3. for 0 < b < 2, Ey is a stable node, i.e.,
a sink.

2. Iff=c1+ g, then E; is non-hyperbolic.
3. Iff<c + g, then,

1. for b = 2, E4 is an unstable node, i.e., a
source;

2. for b = 2, E, is non-hyperbolic;

3. for0 < b < 2, E; is a saddle.

Proof. The Jacobian matrix of the system (1.9) at E, (g, 0)is

b
«20c1 — b ——
J(Ey) = a

b
0 e—B+Cl+E

WeknowA; = 1—band 3, = e—5+51+§ explicitly.

b
iff=>ci+ - then [4;| < 1, so we can get the following results:
When b > 2, |A,| > 1, so E; is a saddle; when b = 2, [A;]| =1
, which says E; is non-hyperbolic; when 0 < b < 2, [4;] < 1,

reading E, is a sink.
b
Iff=c,+ — then |4;| = 1, so E} is non-hyperbolic.

Iff<c+ g, then |A;| > 1. Hence, when b > 2, |4;]| > 1, so
E1isasource; when b = 2, |4;| = 1, therefore, E; is non-hyper-

bolic; when 0 < b < 2, |4;| < 1, implying E| is a saddle.

The proof is complete.

d(cy—8)
[theorem:204] When f < c; < f + ¢, Ez(o-ﬁ)

is a nonnegative fixed point of the svstem (1.9). Let
— 2

cy 2 b;—d(cl —B), 32 %, and dgy = M, then the re-
B

sults about the fixed point E, of the system (1.9) are summarized

in Table 2.
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Table 2: Properties of the fixed point E, (0, ;(CIC ﬁc )
1
Conditions Eigenvalues Properties
c<c, A< 1 sink
c<2 c=c, A]= 1A <1 |non-hyperbolic
c>c, A]>1,|A|<1 |saddlle
c<c, A, <1 sink
B<c <p+2 c=c, |A]=1A] <1 |non-hyperbolic
c>c, A]>1,|A|<1 |saddlle
c<c, A, <1 sink
c=c, non-hyperbolic
c,<c<c, |Al>LJAl<1 |saddlle
c=c, [A]>1,]A|=1 | non-hyperbolic
c, <p+d, c>c, A |>1 source
c<c, A <1 sink
c=c, A =1 non-hyperbolic
c, =pB+d, c>c, A,,|>1 source
c<c, Al <1 sink
c=c, A< 1,|A|=1 | non-hyperbolic
c,<c<c, |JAl<LJAl>1 |saddlle
c>o BF2<c <p+c c=c, [A|=1,|]A]>1 | non-hyperbolic
c, >p+d, c>c, A |>1 source

Proof. The Jacobian matrix of the system (1.9) at the

fixed point E, can be simplified as follows:

,_a(€;=8)
*20ce BFcmer 0
J(E2) =\ d(er—B) 1 Bte—c)lei=F) |
B+c—c, B c
: _dter=h)
Hereout ~ we  obtain 3 = ¢" Bre—e and

_ (breme))(@=F) Therefore,

C

/"12:1

A1l < (=>)1 = blc—(ci— B < (5>)d(c.— )

d
=< (=>) (e -h)
PR PR Gl ) Rt B
= clei =B =2) < (=>)(es~ B

Since f < ¢; < B + ¢, here come two cases as follows.

Ife=2theng<c, <f+c<p+2500<e¢; —f <2,
which says that c(e; —f—2)<0<(c;—f)? and hence
|A2] <1 holds wunder all circumstances. Therefore,

c< (=)0 (e -

ic, a saddle).

B) £ ¢; = E, is a stable node (non-hyperbol-

If c> 2, then, for B<c;=B+2, clc;—B—2)=0 < (c;— f)?
. So, |43] < 1. The type of E; is determined by the relation
c < (=>)ey).

(e1-B)?
1=B- 2=

41| < (=,>)1 (hence For g+2<c,<f+0

l<E>)Nec<(>) 52

Furthermore, one can see

d 2
< (E>)g < (e, = B)< (= >) @ ﬁﬁ)z
s b+d)(c,—F-2)< (*' =)b(e; —B)
2(b+d)
=c—f <(=,>)Téd0.

Thereout, we can summarize all the results discussed
above in Table 2.

The proof is totally finished.
Bifurcation Analysis

In this section, we use the center manifold theorem and
bifurcation theorem to analyze the local bifurcation problems of
. b dfc1—f)

the fixed points E,(0,0), E;(,0) and E; (0, ﬁ;; o
(1.9). For related bifurcation analysis work for biological systems,

) of the system

refer to the references [26-29] and the references cited therein.
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for the Fixed Point E4(0,0)

Theorem 2.2 shows that a bifurcation of the system (1.9)
may occur at the fixed point E, in the space of parameters
2 ={(b,ccy,dapB)€REc, <c} for f=c;. We have the follow-

ing result.

[theorem:301] Consider the parameters (b,c,cy,d, ) in the
space f. Let fo = ¢y, then the system (1.9) may undergo a 1:1
strong renonance bifurcation at the fixed point £0 when the pa-

rameter 8 varies in a small neighborhood of the critical value /3.
Proof. We draw the conclusion through the following analysis.

Giving a small perturbation 8* = § — , with 0 < |8*| « 1 of the
parameter (3, the system (1.9) is perturbed into

— b—ax, =¥,

Xp41 = Xp€ n"¥n

nt+l n o (31)
=B +an—1,

'n+1 = Yn€ Y,

Letting g;:,, = B = B, the system (3.1) can be written as

Xp+1 = xngb_axn_}’n_
_p* __C€¥n

'n+1 = ¥n€ Prtin Yntd, (3-2)

Br+1 = Bn.

Taylor expanding of the system (3.2) at (x,,x,, 5;) = (0,0,0)

takes the form

Xns1 =  Q100%n T Go10¥n T A200%5 + Qooo Vi T A110XnYn
3003 + Qo30S + @210 X3V + A2y Vi +0(03),
1= bigoXn + bo1o¥n + Boo1 B + baooXi + bozo Vi + boa2(Br)?
+b110% ¥ + b1o1%nBr + Bo11VnBin + b3goXi + bozo Vi (3.3)
+bgos (B1)* + baroxiyn + bag1 ¥3B5 + biae¥n )i
. 2 . .
+h102%0 (Ba)* + Bo1avnfn” + Bo21¥i By + bi11Xn¥nlin
+o(pd),
Brsr = Bn
where po = /xZ +yi + (8%
1
a0 =1, Qoo = @oz0 = Agao =0, @z = —a, ay0= K
a’ a 1
Q3po :7' Qz10 :E- @120 :g-
bigo = boo1 = D200 = bozo = D101 = bsoo = booz = bao1 = b1pz = 0,
c 1 1 c(2+c)
bore =1, by = “d biio :E' bo1y = 2 bo3o :W'
1 c 1 c 1
by = 5’ byz = T34’ bgyz =37 byz, ~ 34’ by = T8

Let

@00 Qoo O 1 00
M(E,) = (bmo boio 0= (0 1 0],
0 0 1 0 0 1

then we derive the three eigenvalues of M(E,) to be
4123 = 1, which displays that a 1:1 strong renonance bifurcation
may occur at Eq(0,0). This will be reserved in the futhur discus-

sion.

For the Fixed Point E1 (E. 0)

Theorem 2.3 shows that a bifurcation of the system (1.9)

may occur at the fixed point E 1(2. 0) in the space of parameters
bn
2,={(b,c,c;,d,a, ) €E2|F > ¢, -I—;}
or

bn
2 ={(b,c.cr,d,a,f) €EQF <ci+—_3

for b = 2. Next one will consider these two cases.

CaseI:b0:2,ﬁ>cl+%

In this case, one has the following result.

[theorem:302] Assume the

(b,c,cy,d, a, B) € 0,. Let by = 2, then the system (1.9) may under-

parameters

go a fold-flip bifurcation at the fixed point E; when the parame-

ter b varies in a small neighborhood of the critical value hy.

Proof. Transform the fixed point El(g-o) to the origin 0(0,0).
Giving a small perturbation b* = b — b, with 0 < |p"| « 1 of the

parameter p, the system (1.9) is perturbed into

b2 b2
Upsr = (U, + - +E)e nh T (3.4)
b, 2 cv
Vnpy = vne—,8+c1+un +?+E_vnra_
Letting b*, . = b;, = b*, the system (3.4) can be written as
Uiy = Uy + % + E)e_““ﬂ_"ﬂ - % _2
n+l n a a a a’
2 Clp (35)

bn
—B+ey fup 42—
n ]

Vpi1 = Vpe

* _ EY
n+l — bn-
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Taylor expanding of the system (3.5) at (u,, v,,, 5) = (0,0,0) ob-

tains

€100ty + Co10Vn + Coorby + C200uF + Cozovi
+cgoz2(b)? + €110tinVy + Cro11tn b + Cor1 by
+e3001 + CozoVi + Coo3(Br)? + arpufy,
+e201uED}; + C120un Vi + 1021 () + co120n (by)?
+eoa1vi by + erpiugvyby + 0(pd),

d ooty + doyovn + dooi by + dagoud + dozovi
+daoz2(bp)? +dysotnvn + digiunby; + dog vy by
+dzgotti + dozovi + doga(bp)? + dzyouivy,
+dzo1uiby, + dizoun v + digatty (b3)? + dopvn (by)?
+doz1viby, + dyyug by + 0(p3),

= by,

Untr =

Vnt1r =

(3.6)

+
bn+1

where py = Jui + v + (b})2,

€00 =L Coo= ——, €01 = €200 = Co02 = Cooz = €210 = C10z = Co12 = 0,
1 1 1 1 @’
Co20 =, Cil0 =32 €101 = 3 Co11 = T2’ C300 = rE
1 a 1 1 1
Coz0 = “3q’ €201 = 5’ €120 :g. Coz1 :a. €111 :g,
dygo = door = dzo0 = dooz = di01 = d300 = dooz = dz01 = dyp2 =0,
c 1 1 c(2+¢)
doto 1, don = -7 dis0 =5 doyy = 2 T0s0= "5
1 c 1 c 1
da10 :g dua:*ﬁ. dmz:@. dogy :*%- dlnza-
Let
2
€100 Corg O -1 - 0
M(E;)=|dyo dora 0=
0 0 1 0 1 0
0 0o 1

then we derive the three eigenvalues of M(E;) to be
A; = —1and 4,5 = 1. A fold-flip bifurcation may occur at El(g, 0)
when b varies in the neighborhood of the critical value by. This

will be focused on our further study.

CaseII:bozz_g<Cl+g

similiar to the above Subsection 3.2.1 Case I and omitted here.

Table 3: Spaces of parameters of transcritical bifurcation occurring at the fixed point E, (0, Z(c‘ £ ))
+c—¢
Space of Parameters
Q. ={(bcc,daP)EQc<2,B<c <P+c}
Q, ={bcc,dap)EQlc>2,B<c <f+2}
Q. ={(bcc,d o p)EQlc>2,B+2<c <min{f +¢ B +d}}
Q, ={bcc,dap)EQc>2,+2<c, =p+d <p+c}
={(bcc,d a,B) EQlc>2,max{f +2,+d}<c < +c}
Casel: cy = 3
One has the following result.
In this case, one has the following result, whose proof is
[theorem:304] Assume the parameters
) (bccldvcﬁ)e_r)1734567lnTable3 Letey=c, = ( —B).
[theorem:303] Suppose the parameters in o,. Put by = 2
. Then the system (1.9) may undergo a fold-flip bifurcation at the  If i(;: ﬂf)} = 2, then the system (1.9) undergoes a transcritical bi-

fixed point E; when the parameter ) varies in a small neighbor-

hood of the critical value Po.

de1f)y

For the fixed point E, (0, Bie—c;

Theorem 2.4 shows that a bifurcation of the system (1.9)

ﬂ(Cl 5)

may occur at the fixed point E, (0 ) when the parameters

occur in the spaces 0,,i = 3,4,...,7 1n Table 3, which can be clas-
sified into two cases: one is that the parameter ¢ is perturbed
around the critical value €z, and the other is that the parameter ¢

is perturbed around the critical value c.

furcation at the fixed point E; when the parameter ¢ varies in a

small neighborhood of the critical value co.

Proof. For convenience of statement, here we take the
space of parameters o, = {(b,c,c;,d, o, f) EQ|c = 2,8 < c; < f + ¢}
in Table 3 as an example of verification. The proof for parameters
in the other spaces is similar and omitted. The proof of this prop-
osition is based on the following analysis.
d(ci=h)

B+ec—cy
Bl into the coordinate origin,

Take the changes u,, = x, —0 and Vn = ¥ — to

translate the fixed point E, (0 d(€1 B)
and the system (1.9) to

d(ﬂx—.ﬁ’}]
Bte—cy ,

b—aup—[vpt

Ups1 = Un€ nom
LG )

clvnt f+c— cl]

—B+cy +up—
d(cs ), TS d(e - B)
B+c—rcy B+ec—cy

(3.7)

Vi1 = [vn +
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Giving a small perturbation ¢* of the parameter ¢, i.e.,
" =c—cy=c—cp With g < lo*] « 1» the system (3.7) is per-

turbed into

it T Alea=B)
Upiy = ”“eb auy [V"+c2+c‘—l(c,—5)]'
» (exte ot B (3.8)
cy=BHiun—
d(c; — 8) ' e d(a—f)

e

Vpsy = [V +

cg+ct — (e —B) gt —(ci—B)

Let ¢;,,; = ¢, =c¢" and ¢; — £ D. Then, regard the

system (3.8) as

bdD

_ b—aly —(VH+W)
Upsy = Uy n’,
{ea+cy ) [vn (dD+bey ) +bd D]
sy = (0 + dDbfli;rc*’)em“n (vn+d)(aD+bc,)+baD dDbiIz;-c" ' (3.9)
Cns1 = Cpe
Taylor expanding of the system (3.9) at
(i, v, ) = (0,0,0) to order 3 gets
b[(b+d)D — b
oz = e DI + a7 — bl + DO +2) - bes]
—2(b + d)[2bey — bdD2(bey + )b + d)]}
B2[2(b + d)(bes + d2D) — 3beyd — D(b + d)?]
+ 6D2(b + d)* '
_d2(b +d) = be]{cad[(b + d)(4 +bD) — b2] = (b + d)*(dD + 3bc,)} (310)
fou = 6D(b+ d)®
beyd?(D - 2)
Db+ a7
£ beal2—bD(b+ @) bl + d) ~bedl(h + DD ~ bes]
111 — - .

6d3D5(b + d)°

where p,, = Ju2 +v2+ (ci)?

6D (b + d)*

€100Un 1 €010Vn + €001Cn + €200U5 T €020Vn

+e002 (€n)? + €110UnVn + €101UnCh + €011 VnCr,
+eso0ls + €030V + €003 (€1)* + €210Un vy
+tezo1icy + e120un + €102Un (€5)? + €912 v (€)?
+teo21VF ¢ + 111UV +0(p3),

fiootn T foroVn + foo1Cn + fanoud + fozovi
+fooz(€n)* + fiiotnVn + frortnCs + fo11Vnch
+f300“% + f0301’r? + foos (C;)S + fzw“%”n
+f201“%6';:: + flzo“n”r% + fmz”n(ﬁ';:)z + fo1zVn (C;::)z
+Hozviacn + fiiunvncy + 0(.031)'

Ch

Unt1 =

Vn41 =

. _
Cnt+1 =

€100

€200

€201

flOﬂ

fﬁZO

fﬁﬂZ

fll(l

fﬁll

fEOO

fUOS

fZlO

f120

flOZ

G300

Go30

Goo3

G210

G201

G120

G102

Go12

1, €10 = €go1 = €oz0 = o0z = €011 = €030 = €003 = €012 = €021 = 0,
1 b? a? a

€101 :m' €300 :7- €210 :g'

b3 (b—2) _ b?

6azDz ' ‘11T Tgap:
b?[e; — D(b + d)] b
— o7 fr0=75,
D(b+d)

€110 = 3¢

ab? 1
T34p’ S0 Ty

bead

b, foro=1 —W-
exd?(b +d?D)

(b+d)*
b*d[c; — D(b + d)]? — 2b3 (b + d)?[c; — D(b + d)]

2dD?(b + d)*
b3[be, + D(b +d)]
D2(b+d)? '

(b+d)? — beyd b?(b+d+dD)

2(b+d)3? 2dD(b+d) '
b2ey(d? —b%) — bdD(b + d)? + [(b + d)? — be,d][b%c; — bD(b + d)]

2D(b + d)* ’
b c2d?[(2d — b)(cod + 4) — 2(b + d)?]
6 o0~ 6(b +d)° '
bE[D(b +d) — bey](3b — 6b% — d?D?)
6d2D?(b+ d)°

B3[D(b 4+ d) — bc;][1+ bd +dD(b + d) — be,d]
B dD3(b + d)® '
b2(b+d+dD)

6(b +d)?

—a,

€102 =
foor = =3

101 = —

(b +d)? — be,d
6(b +d)?
c2d2[bey — 2(b + d)]
6(b + d)* '
b3(b + d)? + b3d[(b + d)D — be,][2 — dD(b + d) — beyd]
6d2D%(b + d)*
b[1+bdD(b + d) — b2c,d]  2b%d2[(b + d)D — be,]
- 6d2D%(b+d)? - (b+d)?

201 —

E2BE+1)—1 cd?[(2d — b)(cad +4) — 2(b + d)?]

6 6(b +d)°
c;d?E[bey — 2(b + d) — bE2(b + d)*]
+ 6(b+d)* '

e,d?[(2d — b) (eod + 4) — 2(b + d)?]

6(b + d)°
BA[D(b +d) — bey](3h — 6b — d2D?)

6d2D%(b + d)°
A[D( + d) — bey][1+ bd + dD(b + d) — beyd]
- dD3(b +d)5 '
E2—2(aE+1) cd[3d(2d —b)(c2d + 4) — 6d(b + d)?]
6 + 6(b + d)°
c,d%E[be, — 2(b +d) — bE2(b + d)*]
+ 3(b + d)* '
b2EX(b+d +dD) bc,E[2—bD(b+d)] b(2a?E +b)
6(b +d)? 6d3D5(b + d)° 6dD
| A12( +d) — be,l{epd|(b +d)(4 + bD) - b2] — (b + d)%(dD + 3bcy)}
6D (b + d)®
beyd?(D — 2) — bE[(b + d)? — bead][(b + d)D — bes]

+ 6D (b +d)* '
c2d*[(2d — b)(c,d +4) — 2(b + d)?]
2(b+ d)°

c,d%E[bey, — 2(b + d)]
6(h +d)*

B2[(b + d)D — bes][(b + d)? — bead][(b + d)(D + 2) — be,]
+ 6D2(b + d)b

b[(b+ d)D — bc,|[2bc, — bdD2(bey + d)(b + d)]  b3(b—2)
B 3D3(b +d)’ ~ 6d2D?
B2[(b+ d)D — be,][(b + d)? — be,d][(b + d)(D + 2) — be,]

6D%(b + d)f

b[(b+ d)D — bcy][2bc, — bdD?(be, + d)(b + d)]
- 3D3(b + d)°

b2[2(b + d) (bcy + d2D) — 3beyd — D(b +d)?]
+ 6D2(b + d)* '

c2d*E[be, —2(b+d)] 1

6(b +d)* 6’
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Let
0
€100 €o10 O beyd
M(E3) = | fioo foro O)=|D 1_m
0 0 1 0 o

then we can easily solve the three eigenvalues of M (E3) as

=1 a=1-2 A=1
te== T b+ S
and the corresponding eigenvectors
(&20m20 207 = (E, 1,007, (0,1L,0)", (0,01)7, i=123
. a_C2d _ d(e—B) . .
respectively, where E £ (b-fd]2 = n(nl+a) # 2 is required.

Using the transformation

(i, Vs C;t)T = S(Xy, Yn-an)T:

where

E 0 0
S—(l 1 0)
0 0 1

the system (3.10) is changed into the following form

Xni1 = Xn + F(X, Yy, 6,) +O(:ng)v
Vis1 = A —DEYY, + G(Xp, Yy, 6) + 0(_,032),
Gn+1 = 6n,

where p,, = /X2 + Y2 + 62,

(3.11)

F(Xp, Vo, 6n) = P2o0Xi + Pozo ¥ + P02 85 + Pr10XnY + Pro1Xnbn
+P011Yn8n + Pa0oXi + Pozo¥n + Poo3li + P210Xi Yy
+P201 X385 + Pr20Xn Vi + Pro2Xnbi + Po12¥n67
+P021 Y 8n + 111 X0 Y8,

G(Xp, Y, 60) = Q200X3 + Go20¥s + Q00287 + q110X0 Yy + Q101X 60
+011¥6n + q300X3 + Goz0¥s + G003l + q210X53 Y
+201 X380 + G120X, Y7 + q102X06% + q012Y, 67
+q021Y56n + Q111X YnGn,

2a¢E +1
P2o0 = — 2 Po20 = Pooz = Po11 = Po3o = Pooz = Po1z = Poz1 =0,
1 b? aE(3aE +2) aE+1

Piio = 2 Pio1 :ﬁ- P3o0 :T P210 = 3

b(2a2E + b) 1 B3(b —2) B2

P01 = T 6dD Pizo :g- Pioz :W- Pi11 = “edD’

2E(3E+a+1)+1 cpd[d(b+d?D)+ bE(b +d)?]
200 = 2 - b+dr ’
c;d?(b + d?D)
(b+d)>*
b3d[c; —D(b +d))* —2b3 (b + d)?[c, — D(b + d)]
2dD?(b + d)*
b3[bc, + D(b + d))]
D2(b + d)?

Goz0 =

ooz =

2E+1 c,d[2d(b+ d2D) + bE(b + d)?]

Q110 = 2 b+ d)F
B2c,(d? — b%) — bdD(b + d)? + [(b + d)? — be,d][bPc, — bD(b + d)]
Q101 = 2D(b + d)*
B2[(b + d)(E + 1) + dDE]
B 2dD(b + d)
b2e,(d? — b%) — bdD(b + d)? + [(b + d)? — be,d][b2e, — bD(b + d)]
o1 = 2D(b + d)* :

e d2[(2d — B)(cod +4) — 2(b + d)?]
6(b +d)s
c,d2E[be, — 2(b + d) — BE2(b + d)*]
+ 6(b + ) '
e2d*[(2d — B) (cad + 4) — 2(b + d)?]
6(b +d)¢ ’
B2[D(b + d) — bey](3b — 6b% — d2D?)
6d2D2(b + d)°
D[D(b + d) — bey][1 + bd + dD(b + d) — be,d]
B dD3 (b +d)° '
c,d[3d(2d — b)(czd + 4) — 6d(b + d)?]
6(b +d)®
cyd2E[be, — 2(b + d) — BE2(b + d)*]
+ 3(b + d)* '
b2EX(b+d +dD) beE[2—bD(b+d)] b(2a?E +b)
6(b + d)? 6d3D5(b + d)° 6dD
d[2(b + d) — bey){ed[(b + d) (4 + bD) — b2] — (b + d)2(dD + 3be,)}
+ 6D (b + d)®
beyd?(D — 2) — bE[(b + d)? — beyd][(b + d)D — bey]

+ 6D (b +d)* ’
e2d*[(2d — b)(cad +4) — 2(b + d)?]
2(b + d)f

cd%Ef[be, — 2(b + d)]
6(b +d)*
+b2 [(b + d)D — bes][(b + d)? — be,d][(b + d)(D + 2) — be,]
6D2(b + d)°

b[(b+ d)D — be,][2be, — bdD?(be, + d)(b + d)]  b3(b — 2)
- 3D3(b +d)S " 6diD?
B2[(b + d)D — bey][(b + d)? — bepd][(b + d)(D + 2) — be,)

6D%(b +d)°®

b[(b+ d)D — be;|[2bey — bdD?(be, + d)(b + d)]
- 3D3(b +d)°

b2[2(b +d)(bcy + d?D) — 3bcyd — D(b + d)?]
+ 6D2(b + d)* '

d[2(b + d) — bel{e,d[(b + d)(4 + bD) — b2] — (b + d)?(dD + 3bcy)}
6D (b + d)°

EX(BE+1)—1
G300 = 3 +

Goz0 =

Gooz =

E?—2(aE+1)
Q210 = 3 +

G201 =

2d*E[bc, —2(b+d)] 1
6(b +d)* 6’

G120 =

G102 =

Go12 =

Go21 =

be,d?(D — 2)
6D(b +d)* '
2d[2(b + d) — bes){cd[(b + d)(4 + bD) — b2] — (b + d)*(dD + 3bcy)}
6D(b + d)°

2bc,d?(D —2) — BE[(b + d)? — bead][(b + d)D — bes)
* 6D(b + )

be,E[2—bD(b +d)] b2

6d3D%(b + d)¢ bdD”

G111 =

Assume on the center manifold
Y, = k(Xy, 6,) = kaoXi + k11X,6, + ko267 + 0@53)-

where p,5 = /X2 + 82, then,

k(Xn41, 6ns1)

kyoXaiy +l Xpp18na1 + ko2824y +0(p3s)

= kzﬁ[Xn + F(an k(Xn-an)- 6n)]2 + kll[Xn + F(Xn-k(Xnv 6}1)' 6n)]6n
+ko262 + 0(p33)

= kaoXi + k11 X,8, + kop67 4 0(pds).

Yot =
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Again,

Yns1 = (1 —DBE)Y, + G(X,.Y,, 8,) +0(pZ)
(1 — BEYk(Xy, 8,) + G (X, k(X 8,),8,) + 0(p23)

2EBE+a+1)+1

= {(1—=DbE)ky, +

2
c;d[d(b +d?D) + bE(b + d)?] v
- b +ad)* e
H{(1 = bE)kyy
b2cy(d? — b2) — bdD(b + d)? + [(b + d)? — beyd][bPc; — bD(b + d)]
+ 20(b 1 d)*
bE[(b + d)(E + 1) + dDE].
- 2dD(b + d) M
bed[c; — D(b + d)]? — 2b3(b + d)2[c; — D(b + d)]

+{(1 = bE)ky; +

2dD2(b + d)*

b3[bc; + D(b + nsiT.)]}'S]’[2 o).

D2(b +d)?

Comparing the corresponding coefficients of terms

with the same orders in the above center manifold equation, we

get
e 2EBE+a+1)+1 cd[d(b+d%D)+bE(b+d)?]

20 2bE B bE(b +d)* '
e b2ey(d? — b?) — bdD(b +d)* + [(b + d)? — be,d][bPcy — bD (b + d)]

1= 2bDE(b + d)*

b[(b +d)(E + 1) + dDE]
- 2dDE(b +d)

- b*[e; —D(b +d)]? —2b%(b + d)?[c; — D(b + d)]

02 —

2D2E(b + d)*
B2[be, + D(b + d)]
D2E(b + d)?

So the system (3.11) restricted to the center manifold takes as

Yarr = f(Xn8y)i= X + F(Xy, k(Xy, 61), 6) +0(ﬁ%3)

3 2¢E +1_, b2
= X,— 5 x2 +2de5
aE(3aE +2) 2EBE+a+1)+1
+{ 6 B 4bE
cod[d(b +d?D) + bE(b + d)?]
2bE(b + d)*
(2E + 1)(b + d)* — 2c,d[2d(b + d?D) + bE(b + d)?]
+ 2bdDE(b + d)®
« [b2c,d(d? — b?) — bd?D(b + d)?
+d((b + d)? — beyd)(b2cy — bD (b + d))]
b(2a’E + b)
6dD

X

—b2(b + d)*[(b + d)(E + 1) + dDE] — 1X26,

DI (b—2) Q2F+1)(b+d)* —2c,d[2d(b + d2D) + BE(b + d)?]
Hazpe 4dD?E(b + d)°
v [b*d(c, — D(b + d))? — 2b3(b + d)2(c, — D(b + d))

+2b2d(b + d)(bey + D(b + d)]}X,62 + o(p3s).

Thereout we have

df(0,0) d1(0,0)
fO0 =0 —5x—=1 55—~
22f(0,0) _ 2ad(c;—B)+b(b+d)
—oxz =—(2aE +1) =— ) * 0,
a%f(0,0)  b? b2
9X,08, _ 2dD 2d(c,—fB) ,8)

Then, according to [23, (21.1.42-46), p507] or [24,25],

it is valid for the occurrence of a transcritical bifurcation in the

. d(c1-6)
system (1.9) at the fixed point £2(0. 7" =) when the parameter &

is perturbed around the critical value co = c; = ( —B) and
i({i‘—Jrf}) # 2 for its parameters in the space {23. Then, a transcrit-

ical bifurcation of the system (1.9) at the fixed point E> takes
place. The proof is over.

Casell: cp = €3

Similar to the previous Case I, one can get the follow-
ing result in this case, whose proof is similar, and hence omitted

here.

[theorem:305] Suppose the parameters in the space 25 (or 2;)

. _ (-8 a(e1-B)*
stated in Table 3. Let ¢, = P I e

tem (1.9) undergoes a transcritical bifurcation at the fixed point

= 2, then the sys-

E, when the parameter c varies in a small neighborhood of the

critical value cg.
Conclusion

In this paper, we analyse the dynamical behaviors of a
discrete Lokta-Volterra predator-prey system with the predator
cannibalism. Given the parameter conditions, we completely for-
mulate the existence and stability of three nonnegative equilibria

d
E,(0,0)s El(g.()) and E>(0, B(:; f)) We also derive the sufficient

conditions for the transcritical bifurcation of the system to oc-
cur at the fixed points E, under variaous different conditions.
However, it should be pointed out that the positive equilibria
E*(x",y") and its complex bifurcations have not been discussed

yet, which are worthy being considered in our future study.
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