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Abstract

manifold theorem and bifurcation theory. Finally, some conclusions and discussions are given for further study.
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Introduction

 
phenomena among species [1]. In recent years, many mathe-
maticians and biologists have studied the dynamical behaviors 
between predator and prey [1], especially using the traditional 
Lotka-Volterra predator-prey model, which takes the form as 
follows:

 
the study of practical mathematical models in ecology has be-
come a hot topic that has attracted a large number of mathe-
maticians and biologists to join in. In the past few years, many 
mathematicians have been involved in the dynamical behaviors 
of predator-prey systems with the theory of dynamical system so 

 In the course of studying the dynamics of predator-prey 
-

tional response for predator to prey. Yu [7] researched the global 
-

lie-Gower and Holling-II scheme:

 in which  and  denote the densities of the prey 
and the predator at time t respectively,  and  are the growth 
rate of the prey and the predator respectively,  measures the 
strength of competition among the individuals of the prey,  
and  are the maximum values that per capita reduction rate of 
the prey and the predator can attain respectively,  and  mea-
sure the extent to which the environment provides protections to 
the prey and the predator respectively [8]. In addition, Yu [7] of-

predator-prey model with Holling-II scheme and a prey refuge:

 where  denotes the part of the refuge protection of 
the prey, and . Yue [9] also found that an increase of the 
amount of refuge may guarantee the coexistence and attractivity 

 Nowadays, cannibalism, a special phenomenon in na-
ture [10-12], has attracted scholars’ attetion, which means the 
behavior of consuming the same species. Many species in biol-
ogy have the phenomenon of cannibalism. For example, some 
mature organisms eat young individuals, and the stronger ones 

and insect, such as Atlantic salmon, red backed spiders and some 
copepods [10-12]. Due to the need of energy acquisition and 
others, the behavior of cannibalism will be widely followed in 

-
uals to preserve energy. Cannibalism of biological species will be 
helpful to the sustainable survival of organisms to a certain ex-
tent. It is universally acknowledged that cannibalism has a quite 

 Scholars once used the bilinear function  to describe 
the cannibalism (refer to [10-16] and the references therein). Till 
recently the thought of the functional response of predator-prey 
models was adopted [17-18], and the nonlinear cannibalism 
model was then proposed.

 In 2016 Basheer et al. [17] proposed the predator-prey 
model with nonlinear prey cannibalism in the following form:

 where  and  represent the densities of prey and pred-
ator at time  respectively, and the parameters , , , ,  and 

 are nonnegetive constants. Unlike the previous works [13-16], 
Basheer et al. [17] described the cannibalism in the Holling-

 in the prey equation, in which  is the canni-
 is manifestly more appropriate to the 

reality of ecology and has obvious addition of energy to the can-

in the prey by adding a term  to the prey equation. Apparently 
, as the cannibals need to ingest a lot of prey to produce 

(1.4) is stable without cannibalism, while it’s unstable with prey 

(1.1)

(1.2)

(1.3)

(1.4)
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al. [18] studied the prey-predator model with cannibalism in 
both predator and prey population and got more comprehensive 
results.

Model Development

 In this paper, we further consider the following preda-
tor-prey model with predator cannibalism:

where 
Table 1, and  denotes the cannibalism of the predator. In bio-
logical sense one assumes that all the parameters are nonnegetive 
constants.

Parameter Meaning
x density of the prey at time t
y density of the predator at time t
b intrinsic growth rate of the prey
α

m between the prey 
and the predator

β death rate of the predator
c1 birth rate from the predator cannibalism
n

Table 1: Parameters in the system (1.5) and their meanings

(1.5)

 Without loss of generality, we can assume  
in the system (1.5). In fact, to do this, the transformation 

we consider the dynamical properties for the following system:

 In general, it is of little possiblility to obtain an exact 
-

system, many discretization methods can be utilized, including 

method and semidiscretization method, etc.. In this paper, we 
use the semidiscretization method to derive the discrete model 
of the system (1.6). For the semidiscretization method, refer also 
to [20-22, 26-29].

  represents the 
greatest integer not exceeding 
of change of the system (1.6) at integer number points in the fol-
lowing form:

(1.6)

 It is quite straightforward to see that piecewise con-
stant arguments occur in the system (1.7) and that any solution 

 of (1.7) for  is in possession of the following 
three characteristics:

1.  and  are continuous on the interval 
;

2.  and  exist anywhere when  ex-
cept for the points ;

3. the system (1.6) is true in each interval  
with .

 
the system (1.7) over the interval  for any  and 

:

where  and .

(1.8)

(1.7)
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Letting  in the system (1.8) leads to

where all the parameters .

 In this paper, our main aim is to consider the dy-
namics properties of the system (1.9), primarily for its stabili-
ty and bifurcation. We always assume the space of parameters 

.

 

the occurence of the transcritical bifurcation of the system (1.9). 
In Section 4, we make some conclusions and discussions about 
the system (1.9).

Existence and Stability of Fixed Points

(1.9).

 Considering the biological meanings of the system 

, ,  for , and  
where

for  and . For the existence of , one can 
also refer to the discussions in its corresponding continuous sys-
tem in [19].

 
takes the following form

 reads

where

the following lemma [20-22, 26-29].

 [lem:201]Let , where  and  are two 
real constants. Suppose  and  are two roots of 
the following statements hold.

 If , then

  and  if and only if  and ;

  and  if and only if  and ;

  and  if and only if ;

  and  if and only if  and ;

  and  are a pair of conjugate complex roots with 

if and only if  and ;

  if and only if  and .

 If , namely,  is one root of , then the 
other root 

 if and only if .

 If , then  has one root lying in . 
Moreover,

 the other root  if and only if 
;

 the other root  if and only if .

 ,  and 
-

spectively.

(1.9)
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point  of the system (1.9) are true.

1. If , then  is a saddle.

2. If , then  is non-hyperbolic.

3. If , then  is a source.

 Proof.
 is given by

Obviously,  and . If , then 
, so  is a saddle; if , then , so  is 

non-hyperbolic; if , then , so 

proof is over.

 
point  of the system (1.9) are true.

1. If , then,

1. for ,  is a saddle;

2. for ,  is non-hyperbolic;

3. for ,  is a stable node, i.e., 
a sink.

2. If , then  is non-hyperbolic.

3. If , then,

1. for ,  is an unstable node, i.e., a 
source;

2. for ,  is non-hyperbolic;

3. for ,  is a saddle.

Proof.  is

We know  and  explicitly.

If , then , so we can get the following results: 
When , , so  is a saddle; when , 
, which says  is non-hyperbolic; when , , 
reading  is a sink.

If , then , so  is non-hyperbolic.

If , then . Hence, when , , so 
 is a source; when , , therefore,  is non-hyper-

bolic; when , , implying  is a saddle.

 [theorem:204] When ,  

, , and , then the re-
 of the system (1.9) are summarized 

in Table 2.
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 Proof.

 Hereout we obtain  and 

Since , here come two cases as follows.

 If , then , so , 

which says that , and hence 

 is a stable node (non-hyperbol-
ic, a saddle).

If , then, for , 
. So,  is determined by the relation 

 (hence ). For , 
.

Furthermore, one can see

 
above in Table 2.

Bifurcation Analysis

 In this section, we use the center manifold theorem and 
bifurcation theorem to analyze the local bifurcation problems of 

,  and  of the system 
(1.9). For related bifurcation analysis work for biological systems, 
refer to the references [26-29] and the references cited therein.

Conditions Eigenvalues Properties

c ≤ 2
c < c2 |λ1,2| < 1 sink
c = c2 |λ1| = 1, |λ2| < 1 non-hyperbolic
c > c2 |λ1| > 1, |λ2| < 1 saddlle

c > 2

β < c1 ≤ β + 2
c < c2 |λ1,2| < 1 sink
c = c2 |λ1| = 1, |λ2| < 1 non-hyperbolic
c > c2 |λ1| > 1, |λ2| < 1 saddlle

β + 2 < c1 < β + c

c1 < β + d0

c < c2 |λ1,2| < 1 sink
c = c2 |λ1| = 1, |λ2| < 1 non-hyperbolic
c2 < c < c3 |λ1| > 1, |λ2| < 1 saddlle
c = c3 |λ1| > 1, |λ2| = 1 non-hyperbolic
c > c3 |λ1,2| > 1 source

c1 = β + d0

c < c2 |λ1,2| < 1 sink
c = c2 |λ1,2| = 1 non-hyperbolic
c > c2 |λ1,2| > 1 source

c1 > β + d0

c < c3 |λ1,2| < 1 sink
c = c3 |λ1| < 1, |λ2| = 1 non-hyperbolic
c3 < c < c2 |λ1| < 1, |λ2| > 1 saddlle
c = c2 |λ1| = 1, |λ2| > 1 non-hyperbolic
c > c2 |λ1,2| > 1 source

Table 2: 1
2

1

( )(0,  )d cE
c c
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for the Fixed Point 

 in the space of parameters 
 for . We have the follow-

ing result.

[theorem:301] Consider the parameters  in the 
space . Let , then the system (1.9) may undergo a 1:1 

 when the pa-
rameter  varies in a small neighborhood of the critical value .

Proof. We draw the conclusion through the following analysis.

Giving a small perturbation  with  of the 
parameter , the system (1.9) is perturbed into

Letting , the system (3.1) can be written as

Taylor expanding of the system (3.2) at  
takes the form

where ,

Let

 then we derive the three eigenvalues of  to be 
, which displays that a 1:1 strong renonance bifurcation 

may occur at -
sion.

For the Fixed Point 

 
 in the space of parameters

or

for . Next one will consider these two cases.

Case I: 

In this case, one has the following result.

 [theorem:302] Assume the parameters 
. Let , then the system (1.9) may under-

 when the parame-
ter  varies in a small neighborhood of the critical value .

Proof.  to the origin . 
Giving a small perturbation  with  of the 
parameter , the system (1.9) is perturbed into

Letting , the system (3.4) can be written as

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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Taylor expanding of the system (3.5) at  ob-
tains

where ,

Let

 then we derive the three eigenvalues of  to be 
 and  

when  varies in the neighborhood of the critical value 
will be focused on our further study.

(3.6)

Space of Parameters
Ω3 = {(b, c, c1, d, α, β)  Ω|c ≤ 2, β < c1 < β + c}
Ω4 = {(b, c, c1, d, α, β)  Ω |c > 2, β < c1 ≤ β + 2}
Ω5 = {(b, c, c1, d, α, β)  Ω|c > 2, β + 2 < c1 < min{β + c, β + d0}}

Ω6 = {(b, c, c1, d, α, β)  Ω|c > 2, β + 2 < c1 = β + d0 < β + c}
Ω7 = {(b, c, c1, d, α, β)  Ω|c > 2, max{β + 2, β + d0} < c1 < β + c}

Table 3: 1
2

1

( )(0,  )d cE
c c

Case II: 

 In this case, one has the following result, whose proof is 
similiar to the above Subsection 3.2.1 Case I and omitted here.

 [theorem:303] Suppose the parameters in . Put 

 when the parameter  varies in a small neighbor-
hood of the critical value .

 
 when the parameters 

occur in the spaces  in Table 3, which can be clas-
c is perturbed 

around the critical value , and the other is that the parameter  
is perturbed around the critical value .

Case I: 

One has the following result.

 [theorem:304] Assume the parameters 
 in Table 3. Let . 

If , then the system (1.9) undergoes a transcritical bi-
 when the parameter  varies in a 

small neighborhood of the critical value .

 Proof. For convenience of statement, here we take the 
space of parameters  

-
osition is based on the following analysis.

 Take the changes  and  to 
 into the coordinate origin, 

and the system (1.9) to

 
(3.7)
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 Giving a small perturbation  of the parameter , i.e., 
, with , the system (3.7) is per-

turbed into

 Let  and 
system (3.8) as

 Taylor expanding of the system (3.9) at 
 to order 3 gets

where ,

(3.8)

(3.9)

(3.10)
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Let

then we can easily solve the three eigenvalues of  as

and the corresponding eigenvectors

respectively, where  is required.

Using the transformation

where

the system (3.10) is changed into the following form

where ,

(3.11)

Assume on the center manifold

where , then,
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Again,

  
 
with the same orders in the above center manifold equation, we 
get

So the system (3.11) restricted to the center manifold takes as

 
it is valid for the occurrence of a transcritical bifurcation in the 

 when the parameter  
is perturbed around the critical value  and 

 for its parameters in the space -
 takes 

Case II: 

 Similar to the previous Case I, one can get the follow-
ing result in this case, whose proof is similar, and hence omitted 
here.

[theorem:305] Suppose the parameters in the space  (or ) 
stated in Table 3. Let , If , then the sys-

 when the parameter  varies in a small neighborhood of the 
critical value .

Conclusion

 In this paper, we analyse the dynamical behaviors of a 
discrete Lokta-Volterra predator-prey system with the predator 
cannibalism. Given the parameter conditions, we completely for-
mulate the existence and stability of three nonnegative equilibria 

,  and 
conditions for the transcritical bifurcation of the system to oc-

However, it should be pointed out that the positive equilibria 
 and its complex bifurcations have not been discussed 

yet, which are worthy being considered in our future study.
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