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Abstract

The Internet of Things (IoT) is a concept in which billions of intelligent devices are connected together. In the IoT systems, 
smart devices can interact and communicate with one another and with the environment by transferring data and informa-
tion sensed about the surroundings. Under this concept, multiple sensors are dynamically connected to the internet allowing 
them to share information in semantically interoperable ways all over the world. Therefore, massive amounts of data are 
generated and sent over the network. As a result, these applications necessitate a lot of storage, a lot of computing power to 
enable real-time processing, and a speed network. In this paper, we present an energy-efficient data fusion and processing 
approach aiming to reduce the size of data collected and transmitted over the network while maintaining data integrity. This 
method is designed for sensors that have limited energy and processing resources. Our proposed technique is composed of 
two stages: on-data fusion and in-data compression method. The first stage uses the clustering technique to fuse the sensed 
data. The second stage uses the wavelet image transform to reduce the amount of processed data and therefore would facili-
tate a progressive image’s transmission. The paper focuses on the suggested method’s design, modeling, and simulation using 
the VHDL programming language. In terms of memory and time factors, the design will be compared to existing approaches, 
and the speed and existing hardware will be optimized. Xilinx 14.2 ISE software was used to create the design, which was then 
synthesized on a Virtex4 XC4VSX35 FPGA.

Keywords: Internet of Things, Wireless Sensor Networks, Image fusion, Discrete Wavelet Transform (DWT), Field Program-
mable Gate Array (FPGA).
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Introduction

 In the recent years, the number of smart connected 
devices is rapidly expanding, all of which collect and share data 
in IoT-based systems. Several advanced IoT applications, such 
as intelligent healthcare systems, smart transportation systems, 
smart energy systems, and smart buildings, are enabled by the 
recent advancement [1]. The unified architecture of IoT net-
works includes smart IoT-based application services as well as 
the underlying IoT sensor networks. According to Gartner, the 
IoT global market is expected to reach 5.8 billion IoT-based ap-

plications by 2020, up 21% from 2019. From another estimate 
[2], there will be 80 billion smart items in 2025, with 9.8 linked 
gadgets per person.

 Wireless sensor networks (WSNs) are an essential ele-
ment of IoT technology since they allow heterogeneous systems, 
data, and applications to be combined. Sensor nodes in such sys-
tems are capable of sensing the required data, performing some 
processing, and interacting with other network nodes. The basic 
architecture for IoT sensor data processing, data fusion, and data 
analysis is shown in Fig. 1. Data fusion is one of the processes 
carried out by sensors nodes. 

Figure 1: The basic architecture for IoT sensor data processing, data fusion and data analysis

 When using IoT-based WSN for real-time image 
fusion, some critical points should be considered. Limited 
computational power, storage capacity, narrow bandwidth, and 
required energy are some of these challenges. Therefore, an 
energy-efficient data fusion approach for image transmission 
in IoT-assisted WSN is taken into consideration. The wavelet 
image transform is used in this scheme to ensure significant 
computational and energy savings, as well as communication 

with low image quality degradation. The proposed scheme is 
based on a clustering method. The clustering method is a multi-
source single-Base station case. Data fusion is accomplished at 
the Cluster Head (CH) of each cluster, which has several source 
nodes and one Cluster Head (CH). At the CH, the data perceived 
by each source node is fused using a specific data processing 
method [3]. The fused data is then sent to the BS by each CH.
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 In a wide range of applications, data fusion from nu-
merous sensors is necessary to improve accuracy. It can be used 
to track a target in a military or surveillance system, monitor the 
exact location of an on-road vehicle, locate an impediment in 
the veins of the human body, and so on. The following are some 
examples of data fusion applications in various domains [4]:

• The multi-sensor data fusion approach can be used in ships, 
aircraft, factories, and other applications. Data from electromag-
netic signals, acoustic signals, temperature sensors, X-rays, and 
other sources can be combined in these systems for validation 
and greater accuracy. This integration will improve accuracy and 
develop trust in the system, which will help in real time mainte-
nance, system failure detection, and remote rectification, among 
other things.
• Medical diagnosis is a vital system that incorporates the human 
body and is used to identify disorders such as tumors, lung or 
kidney abnormalities, internal ailments, and more, using NMR, 
chemical or biological sensors, X-rays, and infrared imaging, 
among other methods.
• Many satellites, aircraft, and subterranean or underwater equip-
ment use seismic, EM radiation, chemical, or biological sensors 
to collect precise data or identify natural events in long-distance 
environmental monitoring.
• EM radiation from great distances is used in maritime surveil-
lance, air-to-air or ground-to-air defense, battlefield intelligence, 
data acquisition, warning, defense systems, and other military 
and defense applications.

 Image fusion has recently gained popularity in these ap-
plications because it produces an image that is more valuable in 
terms of content. Image fusion can be done at three different lev-
els of image data: pixel level, feature level, and decision level [5]. 
To obtain the fused image, several mathematical computations 
are done at the pixel level on the intensity values of pixels in the 
source image. At the feature level, features such as shape, edge, 
contrast, color, and texture are retrieved from the source images 
before fusion with the appropriate fusion rule. image. The de-
cision level fusion uses symbolic representations of pictures for 
the image fusion. These three stages of fusion can be applied to 
an image’s spatial representation or its transform representation. 
The multi-scale representation of an image is primarily repre-
sented using the pyramid and wavelet representations.

 This paper proposes a new energy efficient image fusion 
based on Discrete Wavelet Transform (DWT). The efficacy of the 
newly proposed fusion rule is demonstrated in real time on an 

FPGA board. The EHPF and SHPS approaches are used in this 
strategy [6]. The 2D-DWT architecture, which is based on the 
CDF 9/7 standards, as well as the SHPS and EHPF techniques, 
are discussed in this paper. We developed these architectures 
using the VHDL programming language. On the FPGA Virtex4 
XC4VSX35 platform, we compare the proposed architectures to 
the conventional architecture in terms of hardware resources, 
operating frequency, memory capacity, and power consumption.

 The rest of the paper is organized as follows: The re-
quired background and related work are presented in Section 2. 
Section 3 presents the Discrete Wavelet Transform. In section 4, 
the description of the image fusion-based DWT is explained in 
detail. In section 5, the description of the system model, the data 
fusion process as well as the data compress center and the data 
analysis are explained. In the next section, we describe the Im-
plementation and performance analysis and evaluate the output 
performance; the final part is related to the conclusion and future 
works.

Related work

 In recent years, data fusion has a massive effect in a va-
riety of IoT signal and image processing applications. The data 
fusion provides several benefits for data processing and analyt-
ics, by boosting dataset quality and minimizing data transmis-
sion traffic [7]. Due to the large amount of data generated in IoT, 
data fusion is a difficult task, which increases to the complexity 
and even introduces inconsistency and conflict data. The data 
fusion-based energy efficiency systems are used in a wide range 
of WSN-IoT applications. As depicted in Fig.2, data fusion strat-
egies related to WSN-assisted IoT applications is classified into 
two categories: (i) Data fusion level, (ii) Data fusion technique.

 Multi-sensor fusion, appliance features fusion, and se-
mantic data fusion are the three main application levels of data 
fusion in the energy efficiency literature. Appliance identification 
and non-intrusive load monitoring (NILM) are two significant 
applications of data fusion strategies. Since the power consump-
tion of each electrical device can be derived from the aggregated 
energy consumption record without the requirement to install 
a sensor for each application, this application offers interesting 
insights [8]. Therefore, the cost of implementing energy-saving 
ecosystems is significantly reduced. Furthermore, several feature 
fusion techniques can be used to obtain appliance fingerprints, 
hence boosting the accuracy of appliance recognition. In [9], the 
authors have proposed a non-intrusive appliance recognition 
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system that provides specific consumption footprints for each 
equipment. The following steps are used to recognize electrical 
devices: (a) investigating the applicability as well as performance 
comparability of several time-domain (TD) feature extraction 
schemes; (b) exploring their complementary features; and (c) 
employing a new design of the ensemble bagging tree (EBT) clas-
sifier. As a result, a powerful feature extraction technique based 
on the fusion of TD feature (FTDF) is suggested, with the goal of 
increasing feature discrimination and optimizing the identifica-
tion task.

 In [10], a multi-sensor fusion technique is proposed. In 
this case, after the event detection step, appliance features gath-
ered from various domestic devices are fused before applying 
various unsupervised ML techniques. Multi-sensor fusion aims 
to reduce probable sensing mistakes by connecting data collect-
ed by energy consumption submeters, light, and audio sensors.

 Building occupancy detection helps in the reduction 
of wasted energy and the customization of comfort control. The 
approach’s goal in [11] is integrated into this framework. authors 
describe a multi-sensor fusion technique that uses an adaptive 
neuro-fuzzy inference system (ANFIS) to identify occupancy in 
a home building. This system monitors ambient circumstances, 
indoor events, and power consumption patterns from a domestic 
household, to collect occupancy footprints.

 The fusion of high-level information, which is frequent-
ly related to decision generation, is referred to as semantic lev-
el fusion. Wun et al. propose a high-level semantic data fusion 
technique that occurs across distinct sensor networks while also 
aggregating data inside each network in [12]. A semantic data 
fusion architecture that helps in the aggregation, enrichment, 
management, and querying data from diverse sensor modalities 
is proposed in [13]. 

 More recently, complementary research initiatives re-
lated to common information fusion techniques for improved 
performance of IoT applications have been presented. Various 
methods related to data association were studied in order to en-
hance the network performance. These methods provide data fu-
sion schemes that rely on the correlation of at least two or more 
data sources. In [14], the authors propose a new heterogeneous 
sensors data fusion method for binary occupancy detection, 
which determines whether or not a location is occupied. This 
strategy is based on neutrosophic sets and data correlations from 
sensors.

 The state estimation is also a crucial step in the data fu-
sion process. The purpose of state estimation studies is to achieve 
high state estimation accuracy by combining data from several 
sensors in various modalities. Maximum likelihood estimation 
(MLE) [15], Kalman filter [16], particle filter [17], and covari-
ance consistency model [18] are examples of practical approach-
es related to this class.

 The approach of clustering data into distinct categories 
based on their distinctive properties is referred to as classifica-
tion. In [19], the authors presented an on-line learning, data-fu-
sion based methodology for increasing temporal resolution of 
building sensor data using Artificial Neural Networks (ANNs). 
The proposed method uses sensor data from several sensors 
around the building to forecast better temporal resolution data 
from specific sensors.

 Methods belonging to prediction class are mainly uti-
lized to predict outputs based on single or multiple information 
sources. [20] provides an example of some frameworks that use 
data fusion based on prediction.

 The category of unsupervised machine learning relates 
to fusion systems that try to automate knowledge discovery 
without the use of ground-truth labels. A structural health mon-
itoring (SHM) system based on the use of a piezoelectric (PZT) 
active system is introduced for data collecting and management 
[21]. The proposed technique employs a novelty sensor data fu-
sion for data organization, as well as featured vectors and k-near-
est neighbor’s machines, to detect and classify various types of 
damage.

 The statistical inference approaches are used to high-
light some distinct traits as well as some common hypotheses 
retrieved from energy monitoring devices. Two of the most com-
mon applications for such techniques are energy disaggregation 
and appliance identification. The literature contains a large num-
ber of papers based on these techniques, such as [22]. In [22], 
the authors present a methodology based on Integrated Nested 
Laplace Approximation to predict the energy performance of ex-
isting residential building stocks. Five characteristics were iden-
tified as possibly significant to assess the building energy perfor-
mance: urban block pattern, street height-width ratio, building 
class through the building shape factor, year of construction, and 
solar orientation of the main façade.
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 On the basis of relevant platforms, techniques for pre-
senting energy consumption statistics of buildings and their ap-
pliances have been implemented [23]. Multiple data sources are 
fused to create a powerful energy consumption visualization tool 
that provides end-users with relevant information about the ele-
ments that affect their energy usage.

 Various methods for energy-efficient data fusion were 
studied from the above literature in order to enhance the net-

work performance. In order to improve network performance, 
many strategies for data fusion were investigated from the above 
literature. Some approaches to data fusion, particularly image fu-
sion in WSN-assisted IoT applications, are not always energy ef-
ficient. In this paper, we introduce an energy-efficient image fu-
sion Technique novel which is suitable for resource-constrained 
Wireless Internet-of-Thing’s Sensor Networks Application. This 
method is based on DWT and topology clustering. 

Figure 2: Taxonomy of data fusion strategies

The Discrete Wavelet Transform 

 The wavelet transform has lately acquired popularity 
in signal fusion research in general and image fusion in partic-
ular. Wavelet-based coding is more robust under progressive 
transmission, and also makes image fusion easier. Wavelet fu-
sion methods are particularly well suited to applications where 
scalability is a very important point to be considered and image 
degradation may be acceptable. Theoretically, the discrete wave-
let transform (DWT) is a two-dimensional separable filtering 
operation across rows and columns of input image. As depicted 
in Fig.3, the DWT is based on the concept of multi-resolutions, 
which reduces the amount of processed data and hence main-
tains the sensor node restrictions.

 A low-pass filter (LPF) is applied to each pixel, followed 
by a high-pass filter (HPF), line by line and then column by col-
umn, to achieve the DWT. We obtain four sub-bands as a result 
of this process: low-low (LL1), low-high (LH1), high-low (HL1), 
and high-high (HH1). The original image is down sampled in the 
low-pass sub-band. The high-pass sub-band represents the orig-
inal image’s residual information, which is required for a flaw-
less reconstruction of the original set from the low-resolution 
version. The LL1 sub-band, in particular, can be transformed 
into the LL2, LH2, HL2, and HH2 sub-bands, yielding a two-level 
wavelet transform. The third level transform is based on the in-
formation provided LL2. Since they reflect the horizontal, verti-
cal, and diagonal residual information of the original image, we 
refer to the sub-band LLi as a low-resolution sub-band and the 
high-pass sub-bands LHi, HLi, HHi as horizontal, vertical, and 
diagonal sub-bands, respectively. 
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Lifting based DWT

 To reduce arithmetic operations as well as the required 
amount of memory for storage, we based our approach on lifting 
strategy. Using the lifting-based wavelet transform, the LPF and 
HPF are broken up into a group of small filters. In comparison 

to the convolution-based DWT, the lifting approach uses less 
computations. Therefore, for the DWT implementation in the 
JPEG2000 standard, a lifting mechanism has been suggested. As 
shown in Fig. 4, the lifting-based wavelet transform consists of 
three steps: split, lifting, and scaling. 

Figure 3: Two-level decomposition algorithm for 2-D DWT

Figure 4: The implementation of the 1D-DWT lifting scheme
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Where;
 a=-1.586134342, b=-0.0529801185, c=0.882911076, 
d=-0.443506852, and K=1.149604398

 The lifting scheme’s basic idea is to first compute a sim-
ple wavelet by splitting the original signal into odd and even in-
dexed subsequences, then adjust these values using alternating 
prediction and updating stages. Following is a description of the 
lifting scheme algorithm:

• plit step: the original signal is divided into odd and even sam-
ples.

• Lifting step: this step is divided into N sub-steps depending 
on the type of filter. Odd and even samples are separated by the 
prediction and update filters.
•Scaling step: After N lifting steps, the lowpass sub-band (YL(i)) 
and high-pass sub-band (YH(i)) are obtained by applying scaling 
factors K and 1/K to the odd and even samples, respectively (YH).

 Fig. 5. shows how these processes can be used to imple-
ment the lifting technique. The lifting strategy for the Daubechies 
(9, 7) biorthogonal filter used in the JPEG2000 standard for lossy 
compression is presented in the diagram [24]. 

Figure 5:The schematic of 1-D DWT using lifting scheme for (9, 7) filter

The wavelet transform based SHPS technique

 The SHPS technique is based on the idea of eliminating 
the computation of high-pass coefficients [25]. By skipping the 
least significant sub-band, this technique attempts to save more 
energy. As a result, the proposal cuts down on arithmetic op-
erations and memory accesses. “SHPS: skipped high pass sub-
bands” is the name of the suggested method. High-pass filtering 
is not used. Therefore, image has a low pass spectrum. As a re-
sult, high-pass coefficients were not computed, resulting in the 
smallest potential loss of image quality. As shown in Fig. 6, the 
SHPS technique is achieved by making particular adjustments to 
the wavelet transform.

 Using the SHPS technique, the horizontally decom-
posed low-pass sub-band (L1) is further decomposed in the ver-
tical direction, yielding the LL1 and HL1 sub-bands. During ver-
tical decomposition, the H1 high-pass sub-band is not used. The 
LL1, HL1, and H1 sub-bands are then produced by the first SHPS 
level. The image is then processed by applying the 2-D sub-band 
decomposition to the LLi sub-band and skipping the high-pass 
sub-band (Hi) in the vertical direction after one transform level. 
This procedure can be repeated until the desired level is reached. 
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The wavelet transform based EHPF technique

 The proposed image decomposition using the EHPF 
technique is nearly identical to the SHPS implementation. Using 
only Low-Pass Filtering following a horizontal decomposition, 

The LL1 and LH1 sub-bands are maintained, while the HL1 and 
HH1 sub-bands are removed in this method. Therefore, numer-
ous arithmetic operations will be avoided. The EHPF Multilevel 
Decomposition approach is depicted in Fig. 7. 

Figure 6: Two-level decomposition algorithm for SHPS technique

Figure 7: Two-level decomposition algorithm for EHPF technique
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The proposed hardware architecture 

 The proposed architecture is based on the Daubechies 
(9, 7) filter, which is widely utilized in JPEG2000. This architec-
ture improves the 2D-DWT implementation by making effective 
use of hardware resources. It is made up of two functional units. 
The data path unit for data processing and the controller to man-
age the numerous tasks on the data path. The proposed archi-
tecture represents the 2D-DWT algorithm’s line-column mode. 
After the CDF 9/7 DWT computing in the horizontal direction, 
a storage stage is required. However, to accelerate the write/read 
of data, we have opted for using an internal buffer.

 Fig. 8 depicts the suggested hardware architecture. It 
calculates the 2D-DWT in a row-column fashion, on the input 
image. Each row of the external memory image data’s DWT is 
calculated by the row filter. Then, the resulting decomposed 
low-pass and high-pass coefficients are stored in intermediate 
internal buffers. As soon as the row filter generates enough coef-
ficients, the column filter calculates the vertical DWT of data_L 
and data_H rspectively. The architecture framework is composed 
of the following parts: One Line-DWT block, internal buffers, 
two column-DWT blocks, FiFo_band used for multilevel de-
composition, Address generator block and Controller block.

Figure 8: The block diagram of the proposed 2D-DWT architecture

 In the beginning of the transform, the input to the 
1D-DWT block is the YCrCb component stored in the input 
memory. A YCrCb component’s pixel is approximately 8 or 9 bits. 
The filter (9, 7) is called “irreversible” because it is defined using 
irrational numbers. In general, reversibility cannot be guaran-
teed in a finite precision floating-point architecture. Therefore, 
the (9, 7) filter is only suited for lossy compression.

The proposed SHPS architecture

 The proposed hardware architecture of the SHPS tech-
nique is shown in Fig. 9. The decomposed low-pass coefficients 
generated after the line-DWT are stored in intermediate buffers 
and the column filter calculates the column-DWT as soon as 
there are sufficient coefficients generated by the row filter. On 
the other hand, the high-pass coefficients, are saved in the FiFo 
band. Then, the first SHPS level results the LL1, HL1, and H1 sub-
bands. Therefore, the proposed SHPS architecture reduces the 
hardware complexity and memory accesses. 
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The proposed EHPF architecture 

 The proposed EHPF-based architecture is similar to 
the SHPS implementation. As depicted in Fig.10, Only the LL1 
and LH1 sub-bands are preserved in the proposed architecture, 
whereas the two other high-pass sub-bands (HL1 and HH1) are 

removed. In each decomposition level, the LPF is just used in 
the column-DWT. One line-DWT block, internal buffers, one 
column-DWT, LL FIFO used for multilevel decomposition, Ad-
dress generator block, and Controller block make up the archi-
tecture framework. 

Figure 9: The block diagram of the proposed SHPS architecture.

Figure 10: The block diagram of the proposed EHPF architecture
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1D-DWT architecture

 A 1-D filter bank transforms the input signals on line-
DWT into High (H) and Low (L) component signals. According 
to the lifting strategy utilizing the filter (9, 7) shown in Fig.6, 
there are four lifting stages necessary to identify the high and low 
pass coefficients. As a result, each lifting step of the filter (9,7) can 
be allocated to a computing module, as shown in Fig. 11 []. 

 Based on the row processing method shown in Fig. 5, 
the simplest implementation is to apply the first stage of the Lift-
ing Computation (LC1) to all input samples and store the trans-

formed coefficients, and then apply the second step of the Lifting 
Computation (LC2). The third and fourth stages are carried out 
in the same manner. however, to store intermediate coefficients, 
this approach, necessitates a lot of embedded memory, a lot of 
external memory access, and a huge amount of latency. To ad-
dress all of these challenges, we propose that LC2, LC3, and LC4 
computations begin as soon as adequate data is available (2 coef-
ficients are formed), hence reducing LC2, LC3, and LC4 latency. 
The register block is also used to store the intermediate results 
computed by the previous step and the even data locally between 
each processor. 

 Since the even and odd image data are stored in the 
same memory case, the 1D-DWT block can read two inputs in 
a single clock cycle. The internal architecture of the 1D-DWT 
block shown in Fig. 8 consists of four Lifting Computation 
blocks (LC1, LC2, LC3, and LC4), as well as intermediate 
registers blocks (Register 1, Register 2, Register 3, and Register 
4) for storing intermediate data between lifting stages. In general, 
all lifting procedures follow a similar pattern:

                              (1)

 Where; a refers for the multiplication factor. There are 
four multiplication factors in the (9, 7) filter. Fig. 12 shows the 
LC block construction, which consists of one multiplier, one ad-
der, and two delay registers.The system data path width is fixed 
at 16 bits based on the bit precision analysis. The registers and 
adder are intended to handle 16-bit data. In one clock cycle, the 
adder computes the sum of three input vectors. To generate a 
16-bit output, the multiplier multiplies a 16-bit integer by a 12-
bit value (filter coefficient), then rounds the product with twelve 
LSBs and four MSBs. 

Figure 11: 1D-DWT architecture block diagram
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 Values transmitted from one pipe stage to the next 
pipe stage must be set in registers when the data path is piped. 
During clock cycle, the 1D-DWT block creates two coefficients 
(high pass and low pass) after an initial latency. As a result, delay 
registers are used in LC blocks between the pipe stages. Between 
two LC blocks, the registers act as pipeline registers, storing the 
values that will be needed by the next LC block. The data from 
the embedded buffers is computed using two 1D-DWT blocks, 
each of which performs vertical filtering on the columns of the 
row-transformed high pass and low pass individually.

The block of embedded buffers

 While performing the 2D-DWT, the 1D-DWT block 
reads the row data from tile input memory in row-by-row order 
and performs horizontal filtering. The resulting coefficients are 

Figure 12: Each Lifting Computation's basic architecture

saved in the embedded buffers (internal buffers). In the case of 
the (9,7) filter, the 1D-DWT block for columns begins process-
ing after a half of three rows has been processed and stored in the 
intermediate buffers, and performs column-wise filtering along 
the odd rows, generating the four sub-bands LL, LH, HL, and 
HH in the output.

 For the SHPS technique, the 1D-DWT block for col-
umns starts processing after three rows of the L sub-band have 
been processed and stored in the intermediate buffers, and per-
forms column-wise filtering along the odd rows, resulting in 
three sub-bands in the output: LL, LH, and H. The EHPF tech-
nique’s 1D-DWT block for columns begins processing after half 
of three rows have been processed and stored in intermediate 
buffers, and uses just LPF to complete column-wise filtering 
along the odd rows. 
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Figure 13: Internal buffers structure for: (a) (9, 7) filter; (b) SHPS technique; (c) EHPF technique

 The buffers organization of the internal buffer block for 
the three considered architectures is shown in Fig. 13. For the 
(9,7) filter, SHPS, and EHPF, the calculation of column filtering 
along the rows needs the usage of seven buffers, six buffers, 
and four buffers, respectively. One read and one write port are 
available in each buffer. Only 2N (4xN/2) internal buffers are used 
in the EHPF approach to store the intermediate data between 
horizontal and vertical filtering, compared to 2N ((6xN/4) + N/2) 
internal buffers in the (9,7) filter. Internal buffers of 2N ((4xN/4) 
+N/2) size are necessary when using SHPS to store intermediate 
data between horizontal and vertical filtering. The data is stored 
in separate buffers to enable read and write operations to be 
performed at the same clock cycle and to simplify FIFO control.

Image fusion-based DWT

 Considering the Discrete Wavelet Transform as ω, the 
Inverse Discrete Wavelet Transform as ω-1, the DWT image fu-
sion is formalized as:

    
     (2)

 Where, I1(m, n) and I2(m, n) are the two input images, 
I(i, j) is the fused image and  is the coefficient combination rule. 
The schematic diagram of wavelet-based image fusion is illus-
trated in Fig. 14. 
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 The buffers organization of the internal buffer block for 
the three considered architectures is shown in Fig. 13. For the 
(9,7) filter, SHPS, and EHPF, the calculation of column filtering 
along the rows needs the usage of seven buffers, six buffers, 
and four buffers, respectively. One read and one write port are 
available in each buffer. Only 2N (4xN/2) internal buffers are used 
in the EHPF approach to store the intermediate data between 
horizontal and vertical filtering, compared to 2N ((6xN/4) + N/2) 
internal buffers in the (9,7) filter. Internal buffers of 2N ((4xN/4) 
+N/2) size are necessary when using SHPS to store intermediate 
data between horizontal and vertical filtering. The data is stored 
in separate buffers to enable read and write operations to be 
performed at the same clock cycle and to simplify FIFO control.

Image fusion-based DWT

 Considering the Discrete Wavelet Transform as ω, the 
Inverse Discrete Wavelet Transform as ω-1, the DWT image fu-
sion is formalized as:

    (2)

 Where, I1(m, n) and I2(m, n) are the two input images, 
I(i, j) is the fused image and  is the coefficient combination rule. 
The schematic diagram of wavelet-based image fusion is illus-
trated in Fig. 14. 

Figure 14: Schematic Diagram of Image Fusion. (a) Image Fusion-based DWT; (b) Image Fusion-based SHPS; (c) Image Fu-
sion-based EHPF

 The choice of a suitable fusion rule has little impact 
on the quality and content of a fused image. The fusion rule 
chosen is determined largely by the source and the nature of 
the input image. It is also dependent on the information in the 
source image as well as the information required in the fused 
image. Following decomposition, the approximation coefficients 
maintain the original image's basic content, while the detail 

coefficients hold the image's notable features such as edges and 
corners. The fusion rule for approximation coefficients should 
aim for a lossless combination of all the basic information from 
both images. Simultaneously, the fusion rule for detail coefficients 
should focus on capturing the most significant features. For 
combining the approximation and detail coefficients, the Simple 
Average rule (SA) is utilized in the paper
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System model

 IoT is an advanced and innovative method of connect-
ing smart applications to monitoring information technology 
systems via networking technologies. This section presents an in-
telligent monitoring system using the static remote monitoring, 
as shown in Fig.15. This system has a wide range of applications, 

including health care monitoring, smart phones, military appli-
cations, disaster management, and other surveillance systems. 
The WSN implements the smart monitoring system. To analyze 
the detected data and intervene in real time, the majority of these 
applications require data fusion. The data fusion is based on the 
clustering topology. Using this system, the CH is responsible for 
the data fusion.

Figure 15: The intelligent monitoring system-based approach

 We suppose that the 
network has a total of n sensor nodes that are distributed ran-
domly and evenly throughout the region. Using the clustering 
algorithm, the nodes of the IoT network are divided into M clus-
ters, and each cluster has a CH node, where ΦCH = {1, 2. . . M} is 
a set of CH. The nij

th member node (0 ≤ i ≤ n; 0 ≤ j ≤ M) in the 
cluster transfers data Iij ((0 ≤ i ≤ n; 0 ≤ j ≤ M)) to the CH node in 
a single hop fashion. the CH decomposes the gathered informa-
tion Yij(0 ≤ i ≤ n; 0 ≤ j ≤ M) and then transfers the coding data 
to the BS, which recovers the fused process. The fused data are 
estimate via the reconstruction algorithm. The obtained data is 
sent to the cloud server for analysis via a relay BS.

 To meet the con-
straints of the sensor nodes, we present a new algorithm that 
combines the two chosen techniques (EHPF and SHPS) with the 
goal of making image processing easier for WSN-assisted IoT 
applications. The proposed algorithm is called Energy-Efficient 
Wavelet Image Fusion Technique (EEWIFT). The proposed al-
gorithm allows to give sensor nodes adaptive behavior in order 
to meet the demands of the specific application. In this scenario 
a request specifying the necessary constraints of quality of ser-
vice (QoS) is required to initiate the fused image transmission 
scheme. The most important parameter is peak signal-to-noise 
ratio (PSNR), compression ratio (CR), decomposition level (L). 
In this approach, we focus only on the fused image quality. To 
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evaluate the fused image quality, we should use the Peak signal 
to noise ratio (PSNR), which is defined (in decibels) by: 

Where;
I is the maximum possible pixel value and RMSE is the Root 
Mean-Square-Error which is defined by:

where;

  and  (1 ≤ m ≤ M) are the original data image and 
the reconstructed value of the  node in the mth cluster, respec-
tively. m and n are the number of rows and columns in the input 
images.

         The choice between the techniques will depend on the 
processing required energy (Ereq) of the correspond CH. During 
each data fusion process, it is necessary to compare the amount 

)5(

of energy consumption in local processing to the residual energy 
of CHs. The residual energy for each CH is determined in our 
approach by using the following equation:

          where E0 is the initial energy of the current CH, Eprocessing is 
the amount of energy consumption in local processing, includ-
ing decomposition level and data fusion, and ETx and ERx are the 
amount of energy necessary to send-receive l-bit packets respec-
tively.

          As depicted in Fig.16, the proposed “EEWIFT” algorithm’s 
flowchart contains three main elements: “Query: PSNRreq”, 
“EHPF” and “SHPS”. First, the controller is turned on, and the 
desired PSNR parameter is set according to the specific appli-
cation. Subsequently, the energy required to decompose, and 
send-receive l-bit packets must be compared to the residual en-
ergy. 

)7(

)6(

Figure 16: Flowchart of EEWIFT
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The technique choice will be determined by the CH capacity. 
Some wireless Internet-of-Thing’s sensor networks application 
favor consumption energy saving above fused image quality for 
remote wireless sensors network application, while other appli-

cations require a fused image with acceptable perceptual quality 
without taking into consideration consumption energy saving. 
The block diagram of the proposed EEWIF architecture is de-
picted in Fig.17

Figure 17: The block diagram of the proposed EEWIFT

Implementation and performance analysis

          VHDL (VHSIC Hardware Description Language) and 
Matlab are used to describe the proposed architectures. All of the 
system components were specified using structural architecture 
and generic parameters that allowed the word length and decom-
positions number to be changed. The efficiency of the proposed 
algorithm is discussed according to the PSNR value, between the 
fused image the reconstructed fused image, needed material re-
sources and the power consumption.

The trade-off between power consumption and 
fused image quality

          In this paragraph, we analyze the tradeoff between pow-
er consumption and fused image quality when applying respec-
tively the CDF 9/7 DWT, the SHPS technique and the EHPF 

technique. The wireless IoT application determines the trade-
off between power computation and image quality when fusing 
and transmitting an image. In the case of WSN-based IoT, some 
applications may prioritize saving computing energy over image 
quality.

          As depicted in Figs.18 and 19, despite CDF 9/7 DWT’s supe-
rior fused image quality, the SHPS and EHPF processing results 
are still adequate in some WSN-assisted IoT applications, con-
suming less power. The images shown in Fig. 18 are processed 
through the third decomposition level. An energy gain of rough-
ly 8% was achieved using the SHPS approach, with a fused image 
quality of 12 dB.  The EHPF technique achieved an energy gain 
of around 5.6%, with a fused image quality of 13.88 dB. These 
qualities are acceptable to intervene over time in some environ-
mental applications, such as fire detection. 
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Fig. 18. Visual results of fused image. (a) Input source image1 (b) Input source image2 (c) CDF 9/7-based fusion: PSNR= 
16.52 dB; (d) EHPF-based fusion: PSNR = 13.88 dB; (e) SHPS-based fusion: PSNR= 12 dB

Figure 19: Power consumption comparison between CDF 9/7 DWT and proposed approaches

Performance comparison

            The proposed architectures developed in VHDL are 
synthesized, placed, and routed using Xilinx ISE 10.1 software. 
The proposed architecture is implemented using the Virtex4 
XC4VSX35 FPGA. Two grayscale images with size (128×128) 
are stored as an original image. The resources used after imple-
menting the proposed design on the FPGA device are shown in 
the table.1. According to the comparison, the CDF 9/7 architec-
ture uses the most resources. This design uses 14%, 5%, 11%, 7%, 
and 11% of the available resources, like register slices, sliced Flip 
Flops, 4-LUTS, DSP, and IOBs respectively. In comparison to 

the CDF 9/7 DWT architecture, the suggested EHPF architec-
ture may require significantly more performance hardware. The 
SHPS architecture, on the other hand, requires fewer hardware 
resources than EHPF and CDF9/7 DWT architectures.

           As depicted in Table 2, a high processing frequency is 
achieved with a suitable number of the clock cycles/image, thus 
the proposed EHPF architecture is faster, with low number of the 
required clock cycles. This increasing in the speed of the EHPF 
architecture is mainly due to an optimization of the operative 
part. The proposed SHPS and EHPF architectures are faster than 
the CDF 9/7DWT, with low used memory. 
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Resources Available Techniques

CDF 9/7 SHPS EHPF
Available Percentage Available Percentage Available Percentage

 Number of
register slices

15360   2164       14% 1185     7%    2023         13%     

Number of Slices 
Flip   Flops

30720 1454 5% 828 2% 1294 4%

Number of 
4-LUTS

30720 3624 11% 1926 6% 3464 11%

Number of DSP 192 15 7% 10 5% 11 7%

Number of IOBs 448 51 11% 43 9% 51 11%

Table 1: Consumed hardware resources

CDF 9/7 EHPF SHPS

Maximum frequency (MHZ) 84.954 109.792 105.361

Used memory (kilooctets) 330264 325848 305560

Table 2: The used memory and the estimated work frequency

Performance analysis of the proposed Energy-Effi-
cient Wavelet Image Fusion Technique (EEWIFT)

            According to the table.3, we can see that the Virtex5 plat-
form uses the least number of resources in Slices, compared to 
Virtex4 and Spartan3E. The suggested algorithm is faster on this 

platform than on the other considered platforms. Therefore, in 
terms of frequency and material resources needed, this platform 
may be the most appropriate for our application. However, for 
our algorithm, the maximum operating frequency is 95.95MHz 
with a better hardware resources occupation rate 

XC4VSX35-10FF668 XC5VLX330-2ff1760 XC3S1600e-5fg320

Used Percentage Used Percentage Used Percentage

IOS 59 13%  59 4% 59 23%

Number of slice LUT 3542 23% 5197 2% 5370 36%

Maximum frequency 
(MHZ)

109.792 - 155.457 - 95.955 -

Number of 
4- LUTS

2813  9% - - 9976  33%

DSPs 10 5% 10 5% - -

Table 3: Hardware performance comparison
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Conclusion
 In this paper an Energy-Efficient Wavelet Data Fusion 
Technique has been developed. The proposed technique is de-
signed for WSN-assisted IoT applications such environmen-
tal monitoring. To evaluate the performance of the proposed 
technique, we presented an efficient VLSI architecture-based 
DWT to meet the requirements of real-time image fusion. The 
proposed architecture has the advantages of saving embedded 
memory, fast processing time, and low power consumption. The 
VHDL Language properly validated the proposed architecture. It 
routed in Virtex4 XC4VSX35 FPGA.

 Furthermore, we demonstrated that the EHPF ap-
proach produces better fused image quality than the other ap-
proaches using the Matlab tool. Therefore, we proposed a hard-
ware architecture for implementing the EEWIFT algorithm that 
incorporates both SHPS and EHPF approaches. A comparison of 
various platforms was undertaken in order to determine which 
was the most appropriate in terms of operation frequency and 
the resource utilization.
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