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Abstract

It is very important to identify and control risk factors of Covid-19 in susceptible subjects for successful treatment and 
prevention. Both voluntary and involuntary toxic solvent inhalations are becoming an increasing concern in the Covid-19 
pandemic, with possible interactions of toxic solvents exposure and covid-19 drugs treatment or synergic effects on oxidative 
damage parameters within tissues of young or adults vulnerable. These toxic chemicals induce oxidative stress in the skin and 
other tissues as well as DNA damage, inflammation, skin barrier dysfunction and immune dysregulation; thus, increasing 
the sensibility of this population.
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Introduction

 Children are highly susceptible to environmental con-
taminants as their physiology and some metabolic pathways dif-
fer from those of adults. Street children, working at busy inter-
sections, are significantly exposed to chemical solvents that are 
associated with oxidative stress [1].

 According to the National Addiction Survey, both vol-
untary inhalation of industrial solvents and involuntary expo-
sure to them have increased in an important form [2]. In a study 
conducted by Chiara et al. [3] on occupational exposure to the 
vapor of common organic solvents showed that all individuals 
are exposed to certain chemical, physical, biological and envi-
ronmental organic solvents. The author found methylhyppuric 
acids (MHIPPs, xylenes metabolite), phenylglyoxylic and man-
delic acid (PGA, MA ethylbenzene metabolites) as well as S-ben-
zylmercapturic acid (SBMA, toluene metabolite) in the urine of 
workers, such as painters in shipyard industry, gasoline station 
workers etc. 

 Likewise, Renata et al. [4] found S-Phenylmercapturic 
acid (SPMA, benzene metabolite) in the urine of subjects work-
ing in these areas, while Rizk et al. [5] reported lower levels of 
antioxidant enzyme activities and trace metals in his study.

 On the other hand, volatile organic compounds 
(VOCs), such as cyclohexane, toluene, acetaldehyde, formalde-
hyde and acetone, have potentially harmful effects on the skin.

 Evidence suggests that proteasome; a major intracel-
lular proteolytic system involved in a broad array of processes 
such as cell cycle, apoptosis, transcription, DNA repair, protein 
quality control and antigen presentation; is a VOC target. Prote-
asome inactivation after VOC exposure is accompanied by apop-
tosis, DNA damage and protein oxidation. Low protease, which 
degrades oxidized, dysfunctional and misfolded proteins in the 
mitochondria, is also a VOC target [6]. Higher incidence of can-
cer is suspected in subjects exposed to organic solvents. These 
solvents are characterized by reactive metabolic intermediates 
that induce oxidative damage on liver, kidney and hematopoietic 
system [7,8]. 

Solvent Toxicity

 The adverse effects of certain toxicant solvents, such as 
benzene; toluene, which directly affect hormonal impairments; 
molecular alterations; oxidative stress and DNA methylation 

have been reported [9]. Moreover, Liu et al. [10] (2010) found 
that the direct associations between polycyclic aromatic hydro-
carbon (PAH), benzene and toluene (BT) metabolites decreased 
lung function.

 On the other hand, PAHs and BTs exposure could in-
crease the risk of asthma in children. Some results have shown 
that asthmatic children have higher levels of malonaldehyde 
(MDA) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) compared 
with healthy children [11].

 Additive use of inhalants is second place in children, 
adolescents and adults of all addictions (Table 1). In Mexico, 
COVID-19 pandemic has led to an increase in the number of 
people and frequency of inhalation of solvents in the population 
[12]. Among the most used solvents of abused is thinner [13]. 
The major compounds identified in the thinner, with peak area 
>2%, were p- xylene 6%, toluene 4%, 2,4-dimethylheptane 3%, 
2-methylheptane 2%, methylcyclohexane 2.75%, cyclohexanone 
2.6% and nonane 2.1%.

 The main damage caused by these substances is due to 
their high content of toluene (60-70% thinner) [14]. This psy-
chotropic component is considered in the morbidity associated 
with this addiction [15]. Inhalation of toluene vapor generates 
psychotropic effects [16] and may induce male reproductive 
dysfunctions and carcinogenicity for its ability to decrease ep-
ididymal sperm counts and serum concentrations of testoster-
one [17]. In addition, its toxicity decreases albumin, uric acid 
and urea levels; and increases creatinine, triglyceride, cholesterol 
and glucose levels. Simultaneous exposure to these substances 
brings about an increase in the activities of glutathione peroxi-
dase (GPX), malondialdehyde dismutase (MDA) and superoxide 
dismutase (SOD) levels; and a massive tubular degeneration, tu-
bular cell vacuolization, glomerular disorganization, congestion 
and glomerular cell shrinkage in the kidney tissue [18]. Likewise, 
it increases the levels of TBARS, GSSG, GST, SOD, COX-2 and 
caspase-3 activity, and considerably decreases GSH, GR and 
GPx. In fact, the brain (cortex and cerebellum) is the most affect-
ed organ in this addiction [19].

 The damage of DNA genes by minor metabolites of tol-
uene, methylhydroquinone and methylbenzoquinone suggests 
the formation of 8-oxo-7 and 8-dihydro-2’-deoxyguanosine by 
metabolites of toluene, whose concentration increases in the 
presence of Cu (II) and NADH. 
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Generation Of Free Radicals

 UV-visible and ESR spectroscopies have been used to 
detect the generation of O (*-) (2) and semiquinone radicals 
[20]. Another process, which is used to establish contact with 
chemical solvents, is the chemical oxidation with hydroxyl radi-
cal (HO•) and sulfate radical (SO4

•-). These radicals are often used 
to treat water contaminated with aromatic compounds, ethyl-
benzene, toluene, benzene and xylene. 

 The initial phase of the oxidation process involves rad-
ical addition; hydrogen abstraction or one-electron transfer to 
the ring followed by reaction with O2. The hydroxycyclohexa-
dienylperoxy radical produced in this reaction can eliminate 
hydroperoxyl radical (HO2

•) to produce a phenolic compound, 
or it can rearrange to form a bicyclic peroxy intermediate that 
subsequently undergoes ring cleavage [21]. Recent studies with 
toluene and xylene showed that the concentrations of metabo-
lites are individuated, miR-589-5p, miR-941, miR-146b-3p and 

Methylhyppuric acid Phenylglyoxylic acid S-Benzylmercapturic acid

S-Phenylmercapturic acid Cyclohexane Toluene

Formaldehyde
Xylene 2, -methylheptane

Methylcyclohexane
Methylhydroquinone Methylbenzoquinone

Ethylbenzene
Benzene

Table 1: Organic solvents and metabolites use to voluntary or involuntary innhalation
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miR-27a-3p, with well-known implications in oxidative stress 
and inflammation processes [22], and cause adverse effects on 
pulmonary function in occupationally exposed workers [23]. 
These workers show reduction of forced expiratory volume in 1 s 
(FEV₁), FEV₁/forced vital capacity (FVC), and forced expiratory 
flow at 25-75% of FVC.

 Inhalants are widely used as recreational drugs and tol-
uene is the main chemical compound present in them. This sub-
stance is responsible for inducing redox imbalance at the neuro-
nal level. It has been documented those alterations in oxidative 
balance could represent an intermediate signaling pathway in the 
cascade of effects induced by toluene [24].

Tissue Damage Targets

 Toluene is highly lipophilic in nature and this makes it 
potentially harmful to the nervous system [25,26]. This solvent, 
in acute dose, modifies the composition of lipids and interacts 
with membrane lipids by increasing significantly Na+, K+-AT-
Pase activity [27], thus increasing the intracellular Na+. The in-
crease in the intracellular Na+ leads to an increase in Na+/Ca2+ 
exchange. Also, increased Na+ concentration produces electrical 
disturbance, which may result in arrhythmia. In addition, in-
creased Ca2+ may affect proteases and may help in the conversion 
of xanthine dehydrogenase to xanthine oxidase; thus, leading to 
increased production of super oxide radicals. Another important 
effect of toluene is its accumulation in the cell membrane, which 
impedes transport of ions and solutes through it. In addition, 
toluene leads to the formation of oxygen radical, which reacts 
with unsaturated fatty acids and proteins in erythrocytes and 
provokes lipid peroxidation and protein breakdown as well as 
increase osmotic fragility [28]. Oxidation of plasma membrane 
lipids leads to autocatalytic chain reactions, which eventually al-
ter the permeability of the cell [29].

 In vivo exposure to high concentrations of toluene gen-
erates a dose-dependent elevation of oxygen reactive species in 
different organs by significantly increasing protein carbonyls in 
both the frontal cortex and cerebellum. Moreover, toluene expo-
sure induces oxidative stress in the brain and this may be a com-
ponent of an adverse outcome pathway for some of the neurotox-
ic effects [30]. In summary, toluene leads to the generation of free 
radicals and increases lipoperoxidation. In addition, it leads to 
the formation of antioxidant enzymes such as total antioxidant 
substances (TAS), superoxide dismutase (SOD), γ-glutamylcys-
teine synthetase (γ-GCS), glutathione transferase (GST), gluta-
thione peroxidase (GPX) and glutathione reductase (GRD) [31]. 

Likewise, PFT-μ and PFT-α provide neuroprotective actions 
through regulation of oxidative stress and neuroinflammation 
[32].

 Human toluene exposure increases CYP2E1 mRNA 
and modifies its activity in leucocytes as key factors for unravel-
ing the sub cellular mechanisms of toxicity exerted by oxidative 
stress [33].

 Addiction to this substance and to the solvents, in gen-
eral, mainly affects the less favored classes of the society that have 
some degree of malnutrition [34], and implies a persistent oxi-
dant load [35]. Individuals with different immunogenetic back-
grounds have different sensitivities to toxic chemical exposure 
and have allergic stimulation that may influence the threshold 
for toluene sensitivity due to the modulation of neurotroph-
in-related genes [36]. Following exposure to the aromatic com-
pounds, the expression level of COX-2 increases markedly. In 
addition, prostaglandin E (2) (PGE (2)) and prostaglandin F(2α) 
(PGF(2α)), major products of the COX enzyme, were found to 
be upregulated in response to toluene [37]. The author suggests 
that toluene induces the production and secretion of PGE (2) 
and PGF(2α) in lung epithelial cells via p38 MAPK and COX-2 
activation in a redox sensitive manner.

Vulnerability To Alter Immune Response

 Gasoline station workers, abundant in all the countries, 
have shown elevated protein carbonyl (PCO) levels and pro-in-
flammatory cytokines, decreased expression of CD80 and CD86 
in monocytes, and reduced glutathione S-transferase (GST) ac-
tivity. In other areas of work, the influence of organic solvents on 
the immunological, inflammatory and oxidative stress biomark-
ers has been demonstrated [38]. In fact, humans can be exposed 
to organic solvents by occupational exposure or by intentional 
inhalation for addiction or due to COVID-19 pandemic by the 
multiple and frequent use of disinfecting solvents.

 The global impact of the new coronavirus, has been ev-
ident in the last months for the unprecedented socioeconomic 
disruption and for more than 3.4 million deaths, which it caused 
in the world and which has registered a toll of more than 284,000 
deaths in Mexico [39].  Coronavirus disease 2019 (COVID-19) 
is a kind of viral pneumonia whose unusual outbreak started in 
Wuhan, China, and later found to be caused by severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2). Its rapid and 
global spread led to overwhelming inundation of hospitals with 
patients.  In the course of researches to combat the infection, 
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FDA approved remdesivir for the treatment of the infection. Oth-
er off-label medications used in combating the infection include 
chloroquine and hydroxychloroquine, tocilizumab, lopinavir/ri-
tonavir, favipiravir, convalescent plasma therapy, azithromycin, 
vitamin C, corticosteroids, interferon and colchicine [40]. 

Antivirals And Other Drugs Used

 Currently, there is no licensed antiviral treatment to 
prevent human CoV infection. In the case of COVID-19, cli-

nicians have identified its impacts on multiple organ systems, 
including gastrointestinal, renal, cardiovascular, pulmonary, im-
munological and hematological systems [41]. It is very import-
ant to identify and control risk factors of Covid-19 in susceptible 
subjects for successful treatment and prevention (Table 2). Based 
on these findings, the following drug therapies have been em-
ployed for its management:

Table 2: Drugs use to Covid-19 treatment

Na-Ibuprofenate Remdesivir Lopinavir

Ritonavir Hydroxychloroquine Azithromycin

Na-Ibuprofenate  

 Na-Ibuprofenate, has an amphipathic molecule capable 
of inserting into the bilayer membranes of the virus to destabilize 
its structure, alter its biological properties and prevent its dupli-
cation or infection. Its ant virucidal activity on Covid-19 leads to 
considerable reduction in local inflammation in the airways by 
inhibiting cyclooxygenase enzyme and by markedly diminishing 
reactive oxygen species (ROS). Its effectiveness in the treatment 
of COVID-19 infection suggests that reorganization of the actin 
filaments is a key step in lung inflammation induced by systemic 

inflammatory responses caused by SARS-CoV-2, and that the in-
teraction between actin proteins and S1 is involved in the 2019-
nCoV infection and pathogenesis [42].

Remdesivir  

 Remdesivir is an adenosine analogue that can target the 
RNA-dependent RNA polymerase and block viral RNA synthe-
sis. The active metabolite of remdesivir interferes with the action 
of viral RNA-dependent RNA polymerase and evades proof-
reading by viral exoribonuclease (ExoN), causing a decrease in 
viral RNA production. RNA-Dependent RNA Polymerase of 
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SARS-CoV-2 arrest of RNA synthesis occurs after incorporation 
of three additional nucleotides [43]. Remdesivir supplementa-
tion suppresses the systematic and hepatic inflammation by re-
ducing inflammatory cytokines and by blocking nuclear factor 
κB (NF-κB) signaling [44]. However, neither antiviral nor immu-
nomodulatory therapy in patients with SARS-CoV-2 infection/
COVID-19 or pre-exposure prophylaxis against SARS-CoV-2 
has proved to be effective [45].

 3CLpro is a major CoV protease that cleaves the large 
replicase polyproteins during viral replication and can be tar-
geted by the protease inhibitor lopinavir/ritonavir. In particular, 
several cases of recovered patients have been reported after be-
ing treated with lopinavir/ritonavir, which is widely used to treat 
Human Immunodeficiency Virus (HIV) infection in combina-
tion with the anti-flu drug oseltamivir [46].

Chloroquine (Cq)/Hydroxychloroquine (Hcq) 

 These drugs have the capacity to impair the replication 
of SARSCoV-2 by multiple mechanisms and their immunomod-
ulatory properties could ameliorate clinical manifestations that 
are mediated by immune reactions [47].

 HCQ activates the innate immune signaling pathways 
of IFN-β, AP-1 and NFκB. It knocks down mitochondrial anti-
viral signaling protein (MAVS), inhibits TANK binding kinase 
1 (TBK1)/inhibitor-κB kinase ɛ (IKKɛ) and blocks type I IFN 
receptor that reduces the efficiency of HCQ against DENV-2 
infection. Furthermore, HCQ significantly induces cellular pro-
duction of reactive oxygen species (ROS) associated with host 
defense system. Suppression of ROS production attenuates in-
nate immune activation and anti-DENV-2 effect of HCQ [48]. 
On renal dysfunction, HCQ markedly reduces macrophage and 
neutrophil infiltration, pro-inflammatory cytokine production 
and NLRP3 inflammasome activation, inhibiting it by down-reg-
ulating I/R or H/R-induced NF-κB signaling [49].

 Chloroquine (CQ) and Hydroxychloroquine (HCQ) 
share similar chemical structures and mechanisms of action. CQ 
is widely used to treat malaria [50]. These authors found that 
COVID-19 infections are highly pandemic in countries where 
malaria is least pandemic and are least pandemic in nations 
where malaria is highly pandemic. Thus, putting forward their 
hypothetical benefits as efficacious means to treat COVID-19 
infections. However, CQ and HCQ have the potential to cause 
harm as well as induce a broad range of adverse events that in-
clude serious cardiac side effects when combined with other 

agents. For patients with COVID-19, the impact of HCQ on cy-
tokine production and suppression of antigen presentation may 
have immunologic consequences that hamper innate and adap-
tive antiviral immune responses [51]. 

Azithromycin (AZ)

 Some hospitals have begun to use AZ in combination 
with HCQ or CQ for the treatment of COVID-19. The doses 
commonly employed in this regard are 500 mg of AZ on day 1 
followed by a daily dose of 250 mg for the next four days + 200 
mg of HCQ administered three times per day for ten days [52]. 
Azithromycin and hydroxychloroquine perform similar action 
as an acidotropic lipophilic weak base, capable of penetrating 
into cells, and inducing mild adverse events [53,54]. However, 
both drugs were not found to have association with survival 
benefit among hospitalized COVID-19 patients. Nonetheless, it 
is suggested that the combination of Zn supplement with CQ in 
the treatment of COVID-19 yields favorable result. This is be-
cause chloroquine enhances the effectiveness of Zn, since it acts 
as an ionophore for Zn, which, once inside an infected cell, stops 
SARS-CoV-2 replication [55].

Tocilizumab (Tcz)

 This drug is a recombinant humanized anti-inter-
leukin-6 receptor (IL-6R) monoclonal antibody that is used 
as pro-inflammatory cytokine and represents a major break-
through for the treatment of immune-mediated disorders [56]. 
The immune activation responsible for high remission rates is 
also responsible for the unique treatment-related toxicity of cy-
tokine release syndrome (CRS). The clinical signs of CRS include 
fever, hemodynamic instability, and capillary leak associated 
with T-cell activation and elevated cytokine levels. Tocilizumab, 
an anti-IL-6 receptor antagonist, provides control of severe CRS 
without being directly T cell toxic [57]. The drug has demon-
strated to have a trend association towards reducing the mortal-
ity rate among ICU patients [58]. However, a large clinical trial 
is needed to confirm tocilizumab’s clinical efficacy and safety on 
COVID-19 patients.

Ivermectine  

 Ivermectine is an antiparasitic drug that has shown 
effective pharmacological activity towards various infective 
agents, and which has been recommended for COVID-19 treat-
ment [59]. Its drug has been reported to cause cell death in 
cancer cell lines by inducing PAK1-mediated cytostatic autoph-
agy, caspase-dependent apoptosis and immunogenic cell death 
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(ICD) through the modulation of some pathways, including 
the WNT-T cell factor (TCF), Hippo and Akt/mTOR pathways. 
Moreover, it affects the growth and proliferation of cancer cells. 
In addition, it plays several different roles, such as RNA helicase 
function, small-molecule mimetic of the surface-induced disso-
ciation (SID) peptide, an activator of chloride channel receptors, 
an inducer of mitochondrial dysfunction and oxidative stress 
[60].

Oxidative Stress and Viral Infection

 The SARS-CoV-2/COVID-19 pandemic is one of the 
largest challenges in medicine and health care worldwide. In the 
absence of a vaccine and specifically designed drugs, the medical 
community has proposed the use of various previously available 
medications in order to reduce the number of patients requiring 
prolonged hospitalizations, oxygen therapy and mechanical ven-
tilation; and to decrease the high mortality rate resulting from 
the disease [61]. SARS-CoV-19 infection is accompanied by se-
vere pneumonia, pulmonary alveolar collapse and detention of 
oxygen exchange. Excess oxygen induces free radicals (FR). Free 
radicals promote cytotoxicity that leads to cell injury. In addi-
tion, they trigger mechanism of inflammation by mediating the 
activation of NFkB and induce transcription of cytokine pro-
duction genes. Release of cytokines enhances the inflammatory 
response. Oxidizing agents come from phagocytic leukocytes 
such as neutrophils, monocytes, macrophages and eosinophils 
that invade the tissues. Oxidative stress (OS) represents an im-
balance between the production and manifestation of reactive 
oxygen species therefore; the inability of the biological system to 
readily detoxify the reactive intermediates or repair the resulting 
damage [62] may enhance this stress. OS is elevated during crit-
ical illnesses and this contributes to organ failure. In COVID-19 
disease, there is an intense inflammatory response known as a 
cytokine storm that could be mediated by oxidative stress [63]. 
Reactive oxygen species (ROS) play physiological roles as sec-
ond messengers, but can also exert detrimental modifications 
on DNA, proteins and lipids when they are originated from en-
hanced generation or reduced antioxidant defense (oxidative 
stress). Formation and resolution of venous thrombus (DVT) 
are influenced by ROS through modulation of the coagulation, 
fibrinolysis, proteolysis and the complement system, as well as 
the regulation of effector cells such as platelets, endothelial cells, 
erythrocytes, neutrophils, mast cells, monocytes and fibroblasts 
[64].

 Immune cells, particularly neutrophils, protect the 
humans against pathogens; such as bacteria, fungi and viruses; 
through increased generation of free radicals or oxidants and 
neutrophil extracellular traps (NETs) that ensnare pathogens, 
killing them extracellularly. NET levels increase during pro-in-
flammatory diseases. It is found that depending on disease se-
verity, COVID-19 patients exhibit elevated NET levels. Probably 
drugs inhibiting oxidant formation, such as vitamin supple-
ments, could decrease NET formation in animal models of in-
flammation [65]. Therapeutic potential of vitamins A, C, D, E 
supplement and micronutrients in COVID-19 ameliorate the in-
flammation and oxidative stress associated with the disease [66].                  

 Vitamin B3 or niacin is one of the most important com-
pounds of the B-vitamin complex, which performs a number of 
pivotal functions that ensure homeostasis. This role can be at-
tributed to the gut microflora and its ability to shape human be-
havior and development by mediating the bioavailability of me-
tabolites. This fact may be the possible interconnection between 
the novel coronavirus and commensal bacteria and explains how 
the gastrointestinal deficiencies displayed by SARS-CoV-2-in-
fected patients arise [67].

A healthy diet may be considered a reliable tool for maintain-
ing and optimizing our key internal parameters and could help 
SARS-CoV-2 patients.

Ozone Therapy

 Systemic ozone therapy (OT) could be potentially use-
ful in the clinical management of several complications second-
ary to SARS-CoV-2. It is highly effective for decreasing organ 
damage mediated by inflammation and oxidative stress. Ho-
meostasis of the free radical and antioxidant balance by OT are 
associated with its ability to modulate NF-κB/Nrf2 balance and 
the expression of IL-6 and IL-1β [68]. Therefore, ozone thera-
py could mitigate SARS-CoV-2-induced complications and de-
crease mortality.

Expectations

 Since the recovery/death ratio of SARS-CoV-19 infec-
tion has significantly increased in different nations of the world 
in the last weeks, it becomes clear that the experimental antiviral 
therapy together with antioxidant drugs, oxygen and dietary sup-
port, and the availability of intensive care unit beds in hospitals 
with rigorous government control measures, all play an import-
ant role in dealing with this lethal virus. In fact, it is very import-
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ant to identify and control the risk factors of COVID-19 in sus-
ceptible subjects. This would guarantee success in the treatment 
of the disease and its prevention, as well as reduce the voluntary 
and involuntary exposure to toxic solvents that are abundantly 
and widely present today, both at home and work places, as an 
effort to prevent the infection, or avoid unexpected sequelae of 
the COVID-19 pandemic. With the global COVID-19 pandem-
ic, this exposure has become an increasing concern to the health 
sector worldwide.
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