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Introduction

 With the rapid development of sensor networks 
and information technology, industrial production process-
es are generating vast amounts of multi-source, heteroge-

and system behavior [3]. Traditional modeling approaches 
typically rely on prior assumptions about system mecha-
nisms [4], making them inadequate for capturing the highly 
nonlinear and multi-layered uncertainties inherent in indus-
trial processes. At the same time, the increasing demand for 
real-time performance and accuracy has highlighted a 
critical challenge: how to develop regression models that can 

-
-

ingly become a bottleneck in the intelligent transformation 

theories and methods, capable of handling complex and 
uncertain datasets, has become a key focus of both academic 
research and industrial applications.

 Amid the continuous advancement of industrial big 

data-driven modeling strategies are emerging as a powerful 
solution to the challenges of complex industrial process 
modeling. Among these, fuzzy logic systems (FLS) [7] have 
gained widespread adoption in industrial research and 
optimization due to their ability to handle nonlinear 
problems without requiring explicit mathematical models. 
Building on this foundation, fuzzy neural networks (FNN) 
[8] combine the fuzzy inference and uncertainty-handling 
capabilities of FLS with the adaptive learning potential of 
neural networks, enabling automatic parameter adjustment. 
Applications of FNN in areas such as municipal solid waste 
incineration (MSWI) and wastewater treatment processes 
(WWTP) have demonstrated promising results [9,10], 
highlighting its strong potential for improving process 
modeling and control.

 However, the widely adopted early-generation 
Type-1 Fuzzy Systems (T1FS) exhibit inherent limitations in 
handling uncertainty, as their membership functions can 
only depict single-layer fuzzy boundaries, rendering them 

noise and disturbances [11]. To address these shortcomings, 
researchers introduced interval type-2 fuzzy systems 
(IT2FS), which can incorporate uncertainty boundaries, 

logic in complex and uncertain environments [12]. Leverag-
ing the enhanced uncertainty modeling capabilities of IT2FS, 
interval type-2 fuzzy neural networks (IT2FNN) have found 
widespread applications in industrial process control [13]. 

 Despi
IT2FS in extending fuzzy boundaries, their secondary mem-

limiting their capacity to capture multi-level, unstable, or 
-

larly pronounced when dealing with non-Gaussian noise 
and multi-modal fuzzy distributions, leading to potential 
modeling biases [14]. Consequently, improving the adapt-
ability of fuzzy systems to handle multi-level uncertainties 

become a critical research direction.

 To further enhance the modeling capabilities of 
fuzzy systems, general type-2 fuzzy systems (GT2FS) were 
proposed, extending secondary membership functions into 
Type-1 fuzzy sets, thereby theoretically enabling a more 
precise characterization of high-dimensional uncertainties 
[15,16]. However, the complex structure and substantial 
computational overhead associated with GT2FS have 
hindered their practical deployment in industrial scenarios 
requiring real-time processing [17]. As an improvement, 
interval type-3 fuzzy systems (IT3FS), based on type-3 FLS 

type-2 fuzzy sets to construct secondary membership 
-

ty-handling capacity of type-3 fuzzy systems with reduced 
computational complexity. IT3FS has already demonstrated 
promising potential in nonlinear dynamic system control 
and predictive modeling [19,20,21].

-
ment in uncertainty management, its complex system archi-
tecture also introduces an expansive parameter space. In 
practical applications, particularly within adaptive control 
domains, fuzzy models should satisfy real-time online learn-

and high-dimensional search requirements of IT3FS not 
only complicate algorithmic convergence but also impose 
considerable computational burdens, thereby constraining 
its feasibility for real-time industrial applications [22]. -
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to unlock the full modeling potential of IT3FS, while reduc-
ing computational costs, remains an open issue to be solved.

 To address the challenges associated with parame-
ter learning in IT3FS, the recently popular broad learning 

on rapid learning through feature mapping and an enhanced 
node structure. Unlike conventional deep learning frame-
works, BLS eliminates the need for multi-layer iterative 
training, requiring only output layer weight updates to 

reducing computational complexity [24,25]. Moreover, its 
parallel computing and incremental learning mechanisms 

environments. By integrating the advanced uncertainty 
-

nism of BLS, it becomes feasible to develop a fuzzy system 
characterized by strong adaptability and rapid convergence 
under complex uncertain conditions.

 In training regression models for complex datasets, 
conventional performance evaluation metrics, such as the 

characteristics of non-Gaussian or multi-modal dynamic 
systems. Entropy, as a critical measure of data diversity, 

means of revealing higher-order statistical information. In 
modeling error analysis, lower entropy typically indicates a 
more concentrated error distribution with reduced volatility, 

optimize the parameters of IT3FBLS more precisely, leverag-
ing entropy-based metrics for weight adjustment may 
enhance the system's adaptability and robustness in uncer-
tain environments. 

 In summary, to address the challenges of modeling 
and controlling complex uncertain datasets, this article 
proposes a novel neural model framework — the interval 
type-3 fuzzy broad learning system (IT3FBLS) — which 
integrates IT3FS with BLS. Within this framework, the 
IT3FS module replaces the feature mapping unit of BLS, 

capabilities of BLS while overcoming the high-dimensional 
parameter learning bottleneck of IT3FS through multi-level 
uncertainty modeling and rapid learning mechanisms. Addi-
tionally, two entropy-based parameter optimization strate-
gies are introduced, leveraging entropy metrics for model 

ultimately validated through its application in uncertain data 

contributions of this article are as follows:
(1) To address the challenges of complex uncertainty and 
real-time regression modeling, an IT3FBLS framework 

achieves precise regression and adaptive control of complex 
dynamic systems with high uncertainty representation 
capability while requiring only limited training samples.

node structure of BLS, the IT3FBLS framework further 
improves modeling performance for high-dimensional and 

an initial exploration of integrating advanced fuzzy logic 

future advancements in uncertainty modeling.
(3) Two entropy-weighted secondary parameter optimiza-
tion algorithms are designed, including an adaptive regular-
ization strategy and a gradient descent-based secondary 

the impact of random noise and non-stationary disturbances 

extraction, laying the foundation for high-precision regres-
sion modeling and robust control.

 e remainder of this article is organized as follows: 
Section 2 introduces the preliminaries, including IT3FS and 
BLS. Section 3 provides details on the IT3FBLS structure and 
implementation, entropy-based parameter learning, compu-
tational complexity analysis, and algorithm pseudocode. 
Section 4 presents experiments and discussions, while 
Section 5 summarizes the research.

2. Preliminaries

2.1 Interval Type-3 Fuzzy System (IT3FS)

  IT3FS is a fuzzy logic system designed to 
handle complex uncertainties. By employing IT2FS to 
construct secondary membership function (SMF), IT3FS 

-
-

layers: input layer, membership function computation layer, 
rule inference layer, type-reduction layer, and output layer. 

and passes it to the membership function computation layer. 
xi represents 

the i
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to prepare and provide input data for subsequent computa-
tions.

-

variables by mapping each input  xi to the upper and lower 

-

xi is xi , 
the calculation process is as follows.

 j
iA  j

iA  j
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 s
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where        represents the center of the fuzzy set                and           
        are the upper and lower widths of the fuzzy set       , 
respectively;                  represents the number of  fuzzy  rules;                       
                   represents the number of horizontal slices;                       
         are the upper and lower 

boundaries of horizontal slices;                                            rep-
resents the center value of the membership function and the 
variance of the input, which are calculated as follows:
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of j-th rule at horizontal slices in terms of               and               , 

degrees of j-th rule at horizontal slices in terms of             and           
 , respectively; and  T( ) is the T-norm operator for 

aggregating input membership degrees.

are as follows:

where       and       are the upper and lower bounds of the j-th rule consequents, respectively.

j-th rule are computed using a T-norm operation is shown:

where  p is                    .

2.2 Broad Learning System (BLS)

to achieve fast modeling and training through a shallow and 
parallel network  structure.  BLS  constructs   broad  features 

using feature mapping nodes and enhancement nodes, 
while optimizing only the weight matrix of the output 

conventional deep learning methods. Below, the computa-
tional process of BLS is described layer by layer, including 

where        and       are the consequent values at horizontal 
slices in terms of                and               .

-
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the input layer, feature mapping layer, enhancement layer, 
and output layer.

forwards it to the feature mapping layer. Assume the value of 
input data is                  , where  N is the number of samples 
and   D

layer simply passes the data to the next layer without 
performing additional processing.

performs nonlinear feature transformations on the input 
data to generate a high-dimensional feature space, as 
follows,

where                     is the output matrix of feature mapping 
layer with input X, M is the number of feature mapping 
nodes in this layer,    are all parameters of the feature map 
layer, and         is a nonlinear activation function. 

enriches the feature space by providing additional redundant 

and nonlinear representations. It takes the feature node 
matrix P as input and generates the enhancement node 
matrix                  using a randomly initialized weight matrix    

of  H

where L is the number of enhancement nodes and           is the 
nonlinear activation function.

matrix P  and the enhancement node matrix H  

feature matrix                                       . For the target output   
 , where  c   is the output dimension, the predicted 
output      is calculated as:

where                           represents the weight matrix, which is optimized using ridge regression as follows,

where the       represents the regularization parameter, and    I is the identity matrix.

-
mentation description of each layer  is as   follows   (1) Input 

as 

where D X  
is passed to the interval type-3 fuzzy mapping layer for 
further processing.

fuzzy mapping layer consists of  M independent IT3FS 
units. Each IT3FS receives the input X  and computes a 

of all IT3FS units form the feature matrix in (1)~(16):

(IT3FBLS)

3.1 Structure and Implementation                                                  

input layer, the interval type-3 fuzzy mapping layer, the 
enhancement node layer, and the output layer. 

(17)

(18)

(19)

(20)

(21)

(22)
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 N cY
 Ŷ
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 1( )oW Q Q I Q Y• •

 

 T 1
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Figure 1:  IT3FBLS structure 
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where                         is a weight matrix, connecting the interval 
type-3 fuzzy mapping layer, enhancement layer, and output 

layer.

Y is the true 
output of the samples, and the solution for         can be derived 
from (20).

IT3FS-based mapping layer and enhancement nodes within 

To better capture these localized mapping characteristics, 
information entropy is introduced to quantify the output 

measure is then used to weight the regularization strength, 
replacing the uniform penalty term with a component-wise 

where      represents the regularization weight for the ith 

of its distribution entropy on the regularization strength. 
With              , a larger          imposes a stronger penalty on the 
corresponding weight, while a smaller value results in a 

First, let                                                denote the ith column of 

matrix       , representing the output of the ith fuzzy subsys-
tem or enhancement node for a dataset with N samples. 

-
tion of       , whose probability density function (PDF) can 
be estimated using a Gaussian kernel as:

3.2 Entropy-Based Parameter Learning

 To enhance the robustness and generalization 
performance of the BLS, this article introduces the concept 
of node-level entropy, which is used to measure the discrete-

ness of the output distribution of each fuzzy subsystem and 
-

tively adjust the regularization strength for each node 
within the penalty term.

3.2.1 Entropy-Weighted Adaptive Regularization through classical ridge regression algorithm, with the 
objective function expressed as:

-
ties and serves as the foundation for the subsequent 
enhancement layer.

feature space, complementing the outputs of the interval 
type-3 fuzzy mapping layer. With L  enhancement nodes, the 
enhancement node output matrix                                      is 
computed using V and c  in (18), where                                    . 

obtained by combining  P and H .
(4) Output layer: Utilizing the IT3FS module for feature 
mapping enables a robust representation of data uncertain-
ty, thereby enhancing the performance of regression 

(23)
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where       is the nth value of      , and                            is                   calculated as:

Substituting (30) into (29) gives the discrete form of the 
marginal information potential         under the Gaussian 

kernel as follows: 

where     is a factor with                  .: regularized term in (25) can be reformulated as:

to obtain the information potential           . 
calculating its information potential, an exponential 
mapping function is applied to transform the potential into 
a regularization weight:

where        the standard deviation of the sample data. (KDE), the marginal information potential can be 
expressed as:

(27)
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Substituting (35) into (36), the optimal weight of         can be calculated as follows:

Notably, by measuring the output distribution entropy of 
each node and adaptively adjusting the corresponding thereby improving the generalization performance of the 

IT3FBLS model.

3.2.2 Gradient-Based Secondary Optimization

 In the entropy-weight adaptive regularization 
algorithm described earlier, the output layer weights          of 

-
hanced ridge regression algorithm. However, the internal 
parameters of IT3FBLS, including the weight matrix      and 
the bias vector c
network performance but cannot be directly solved using the 

 If these internal parameters remain initialized 
-

tial cannot be fully exploited. To address this, a gradient 
descent (GD)-based secondary optimization strategy is 
introduced, enabling collaborative optimization between 
output weights and internal parameters during each 

accuracy and convergence speed. 

 kth 

iteration are as follows:

First, given the training data X  and Y , and the current 
weight matrix              and         ，the outputs of the fuzzy 
subsystems              and enhancement nodes           can be 
calculated using  (22). As indicated by (18), the values of            
            depend solely on X , while  H(K) is determined by 
P(K) ,            , and C(K).

information potential for each node is estimated, and the 

layer weights                    for the current iteration are comput-
ed directly via (37).

Next, for internal parameters                                    , which 
cannot be updated through entropy-weighted ridge regres-
sion algorithm, GD is applied as follows:

Finally, substitute (34) into (25) , and let   be the optimal 
solution. 
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With M  IT3FS units in the interval type-3 fuzzy mapping layer, the total complexity becomes:

For industrial control tasks,  N=1.

Type-reduction layer and output layer: gated outputs over j  rules and  k slices, with a complexity as 
follows: 

Rule inference layer: Inference over  j rules has a complexity as follows:

process follows the [13].

 n, once                                       are updated, the distri-
bution characteristics of the fuzzy subsystems and enhance-

-
lated, leading to an updated weighted diagonal matrix                     

updated via (38).

 Finally, the above steps are repeated until the maxi-
mum number of iterations is reached or the convergence 

secondary optimization process for IT3FBLS parameters.

 It is worth noting that, under traditional supervised 

learning frameworks, each update of internal parameters 
typically necessitates a complete forward pass through the 
entire network, followed by backpropagation to compute 
gradients—a process that demands substantial computa-
tional resources. In contrast, the proposed parameter 

the output layer weights are computed via a closed-form 
ridge regression solution, while the internal parameters are 
locally adjusted using gradient descent. Information poten-
tial and the weighted diagonal matrix are recalculated only 
when necessary. By handling parameter updates in each 
iteration, the approach leverages the computational 

approach an optimal solution.

3.3 Computational Complexity analysis

model is determined by the three main components of its 

architecture: the interval type-3 fuzzy mapping layer, the 

complexity of each component is analyzed in details as 
follows

3.3.1 Complexity of Interval Type-3 Fuzzy Mapping Layer independent IT3FS. Each IT3FS computes its output 
through several stages.

Membership function computation layer computes the 
membership functions of all input features over j  fuzzy rules 

and  k

(38)

(39)

(40)

(41)

(42)

 2

2
1 ok k k kY Q W

 0

 ,k k kc

 1k

 1o kW  1k

 Membership ( )O O N J K

 Inference ( )O O J

 Output ( )O O J K

 IT3FS ( ) ( ) ( )O O J K O J O J K
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3.3.2 Complexity of Enhancement Layer feature transformations through  L enhancement nodes:

Matrix multiplication: Combining the outputs of the mapping layer   with   requires:

Activation function: Applying the activation function to L  enhancement nodes results in:

follows:

the sum of the three components as follows:

3.4 Algorithm Pseudocode

 e pseudocode of the proposed IT3FBLS model is 

as follows:

 In summary, the parameter choices for M , J , K , 
and L  must balance computational complexity and system 
performance. Among these factors, M  is the primary deter-
minant of complexity, and its adjustment has the most 

-
K and  J primari-

-
ters can be reduced when modeling performance demands 

L 

performance and can be increased to enhance the model's 
adaptability and generalization capabilities. 

Remark: In the proposed gradient quadratic optimization 
algorithm, since the most computationally interval type-3 
fuzzy mapping layer does not require repeated forward 

not only reduces computational costs but also ensures the 
scalability of the proposed model for large-scale and 
real-time applications.

3.3.3 Complexity of Output Layer
        is:

(43)

(44)

(45)

(46)

(47)

(48)

 Mapping (2 ( ) ( ))O M O J K O J

 Enhance-Multiply ( )O O M L

 Enhance-Activation ( )O O L

 Enhance ( ) ( )O O M L O L

 Q

 oW

 Output ( )O O M L

 IT3FBLS Mapping Enhance Output

( ) ( )
(2 ( ) ( ))

2

O O O O

M O J K O J
O M L O L
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Algorithm 1 IT3FBLS modeling algorithm 

Input: Training data  {X, Y}; Initial model parameters; Regularization parameter; Learning rate ; Maximum 

iteration number 

Update the output layer weights again using the updated  

Repeat Steps 2 through 5 until the maximum number of iterations is reached. 

(6). Output results After IT3FBLS training is completed, the model prediction output   is 

calculated as the final output of the model 

secondary optimization
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 To evaluate model performance, three commonly 
used regression indicators are adopted: root mean square 
error (RMSE), mean absolute error (MAE), and R2. To 
ensure a fair evaluation of the simulation results, all experi-
ments are repeated 20 times, and the mean, variance, and 

optimal values of the evaluation metrics are recorded.

4.2 Hyperparameter Setting Description

4. Experiments and Discussion
 
 In this section, a systematic study is conducted to 

-
ing system and its associated learning algorithms.

4.1 Modeling Datasets and Evaluation Indicators Descrip-
tion

 To ensure a rigorous and comprehensive evalua-
tion, three categories of datasets are designed:

-
tative publicly available benchmark datasets for data-driven 

-
mensional and two low-dimensional datasets sourced from 
the University of California, Irvine (UCI) Machine Learning 

-
sionalities and complexities. 

the robustness and generalization ability of the proposed 
algorithm in handling dynamic nonlinearity and high-un-
certainty environments. Two classical chaotic systems, the 
Mackey–Glass time series [30] and the Rossler attractor 

uncertainty-driven behaviors. 
(3) Complex industrial process dataset. To examine the 
practical applicability and feasibility of the proposed 
approach in real-world industrial settings, this experiment 
applies the algorithm to data-driven modeling tasks in 

temperature modeling in MSWI [32] and process modeling 
in the Tennessee Eastman (TE) chemical process [33]. All 
process data are collected in real time from actual industrial 
production environments, ensuring a realistic assessment 
of the algorithm's industrial applicability.
 For these datasets, an equal-interval selection 
strategy is employed, and all datasets are standardized and 
divided into three subsets: training, validation, and testing. 

Table 1: Dataset details for regression modeling

Datasets Details of datasets 
No. of Samples 

Input variables 
Train Validation Test 

1 

Concrete compressive strength (CCS) 515 257 258 8 

Abalone 2088 1044 1045 8 

Housing 253 126 127 13 

2 
Mackey–Glass 400 200 200 4 

Rossler attractor 500 250 250 3 

3 
MSWI process 428 214 215 5 

TE chemical process 250 125 125 11 
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To comprehensively assess its performance, comparative 
experiments are performed against the original BLS [23] , 
classical regression models including FNN [34] and FBLS 
35], as well as advanced regression algorithms integrating 
fuzzy systems and broad learning, including IT2FNN [36] 
and IT2FBLS [37]. 

4.3 Results and Discussion 

4.3.1 Benchmark dataset 

the testing set are shown in Fig. 2 and Table 3. In Table 3, 
the bolded values indicate the two best-performing meth-

proposed parameter learning algorithm, a comparison is 
made between IT3FBLS employing traditional ridge regres-
sion algorithm (denoted as IT3FBLS-1) and IT3FBLS utiliz-
ing entropy-weighted adaptive regularization (denoted as 

number of fuzzy rules J, number of horizontal slices K, 
number of fuzzy subsystems M, number of enhancement 
nodes L

search approach, following these steps: First, identify the 

value range for each. Next, enumerate all possible hyperpa-
-

uration. Finally, compare the evaluation results across all 

other benchmark models in comparison experiments are 

are detailed in Table 2.

Table 2: 

 

Datasets 
Hyperparameters of IT3FBLS 

J K M L   

Range [1,100] [1,50] [1,1000] [1,2050] [0,1] [0,1] 

CCS 66 7 460 140 0.7 0.07 

Abalone 8 4 835 176 0.3 0.2 

Housing 48 11 271 490 0.45 0.4 

Mackey–Glass 8 40 20 800 0.3 0.3 

Rossler attractor 6 4 10 800 0.3 0.3 

MSWI process 42 6 125 1610 0.22 0.16 

TE chemical process 4 40 10 600 0.3 0.2 
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(a) Housing dataset

(b) CCS dataset

(c) Abalone dataset

Figure 2: Prediction results of the testing set for the benchmark dataset
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Table 3: Performance comparison results of the testing set data on the benchmark dataset

Datas
ets 

Method
s 

RMSE MAE R2 

Mean Var Best Mean Var Best Mean Var Best 

Housi
ng 

BLS 1.8988E
+01 

1.7532E
+01 

4.9911E
+00 

5.0214E
+00 

1.7552E
+00 

3.3301E
+00 

-
6.5651E
+00 

1.2706E
+01 

7.1119
E-01 

FNN 6.1635E
+00 

9.4208E-
01 

5.4973E
+00 

4.0787E
+00 

6.4398E-
01 

3.6233E
+00 

5.5443E-
01 

1.3463E-
01 

6.4964
E-01 

FBLS 5.9531E
+00 

1.1426E
+00 

4.7884E
+00 

3.9587E
+00 

3.9816E-
01 

3.3284E
+00 

5.7475E-
01 

1.6724E-
01 

7.8698
E-01 

IT2FN
N 

4.1984E
+00 

4.1219E-
01 

3.5039E
+00 

3.0080E
+00 

1.9918E-
01 

2.6240E
+00 

7.9378E-
01 

4.1478E-
02 

8.5766
E-01 

IT2FB
LS 

6.3649E
+00 

7.3477E-
01 

4.9374E
+00 

4.5117E
+00 

5.0624E-
01 

3.5953E
+00 

5.2438E-
01 

1.0990E-
01 

7.1737
E-01 

IT3FB
LS-1 

6.2516E
+00 

7.3677E-
01 

5.5300E
+00 

4.6600E
+00 

4.8271E-
01 

4.1938E
+00 

5.4123E-
01 

1.1426E-
01 

6.4546
E-01 

IT3FB
LS-2 

6.1518E
+00 

7.0482E-
01 

4.9612E
+00 

4.1655E
+00 

5.0065E-
01 

3.8651E
+00 

5.8664E-
01 

1.0812E-
01 

6.8520
E-01 

IT3FB
LS 

5.8991E
+00 

3.6990E-
01 

4.2865E
+00 

3.8528E
+00 

2.2710E-
01 

3.2322E
+00 

6.0470E-
01 

4.7700E-
02 

7.9050
E-01 

CCS 

BLS 3.5018E
+01 

3.8531E
+01 

1.0920E
+01 

9.9500E
+00 

4.3984E
+00 

6.3229E
+00 

-
7.8145E
+00 

2.3569E
+01 

6.0136
E-01 

FNN 1.2610E
+01 

6.2004E-
01 

1.1921E
+01 

8.8290E
+00 

9.0309E-
01 

8.0701E
+00 

4.6742E-
01 

5.3011E-
02 

5.2493
E-01 

FBLS 9.9873E
+00 

1.0259E
+00 

8.1331E
+00 

7.5818E
+00 

8.2169E-
01 

6.0590E
+00 

6.6320E-
01 

6.8675E-
02 

7.4887
E-01 

IT2FN
N 

8.3817E
+00 

3.6140E-
01 

7.4174E
+00 

6.3209E
+00 

2.7262E-
01 

5.5798E
+00 

5.2650E-
01 

1.9941E-
02 

7.1607
E-01 

IT2FB
LS 

1.2468E
+01 

1.3018E
+00 

9.3524E
+00 

9.6935E
+00 

1.0329E
+00 

7.3395E
+00 

4.7491E-
01 

1.0449E-
01 

7.0760
E-01 

IT3FB
LS-1 

1.3538E
+01 

2.8278E-
01 

1.3235E
+01 

1.1004E
+01 

1.9383E-
01 

1.0824E
+01 

3.8710E-
01 

2.5980E-
02 

4.1439
E-01 

IT3FB
LS-2 

1.3860E
+01 

7.2619E-
01 

1.3084E
+01 

1.1275E
+01 

5.5857E-
01 

1.0557E
+01 

3.5637E-
01 

6.7368E-
02 

4.2767
E-01 

IT3FB
LS 

2.4234E
+00 

1.5360E-
01 

2.1406E
+00 

1.8176E
+00 

1.2040E-
01 

1.6300E
+00 

7.6473E-
01 

5.9300E-
02 

7.3200
E-01 

Abalo
ne 

BLS 8.2271E
+00 

1.1380E
+01 

2.6158E
+00 

2.6303E
+00 

6.5151E-
01 

1.9711E
+00 

-
1.1315E
+01 

4.3493E
+01 

5.5819
E-01 

FNN 2.9319E
+00 

3.5560E-
02 

2.9068E
+00 

2.2705E
+00 

5.0842E-
02 

2.2346E
+00 

4.4492E-
01 

1.3464E-
02 

4.5444
E-01 

FBLS 2.7202E
+00 

2.7033E-
01 

2.3118E
+00 

1.9126E
+00 

1.3661E-
01 

1.7431E
+00 

5.1777E-
01 

9.9518E-
02 

6.5492
E-01 

IT2FN
N 

2.4935E
+00 

1.7485E-
01 

2.3083E
+00 

1.8871E
+00 

1.2127E-
01 

1.7381E
+00 

5.9677E-
01 

5.8821E-
02 

6.5598
E-01 

IT2FB
LS 

2.3091E
+00 

1.3151E-
01 

2.1305E
+00 

1.7435E
+00 

1.1133E-
01 

1.5805E
+00 

6.5468E-
01 

3.9673E-
02 

7.0694
E-01 

IT3FB
LS-1 

2.6090E
+00 

1.2095E-
01 

2.4669E
+00 

1.9028E
+00 

1.1005E-
01 

1.7313E
+00 

5.5973E-
01 

4.0807E-
02 

6.0707
E-01 

IT3FB
LS-2 

2.3936E
+00 

6.6976E-
02 

2.3062E
+00 

1.7696E
+00 

4.6055E-
02 

1.7170E
+00 

6.2984E-
01 

2.0760E-
02 

6.5660
E-01 

IT3FB
LS 

2.3975E
+00 

1.0250E-
01 

2.2039E
+00 

1.6459E
+00 

1.0730E-
01 

1.4590E
+00 

5.3750E-
01 

3.9600E-
02 

6.0990
E-01 
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4.3.2 Uncertain Function dataset

 For uncertain function modeling, the system 

dynamics are based on the Mackey-Glass equation and the 

formulated as:

where          is the system state,                   , and              represents 

the input variables consist of delayed states from multiple 
past time steps, including                                                         . 

ship between the current state         and historical states                     
 , where higher-order nonlinear terms induce 
various uncertain dynamic behaviors such as periodic 
solutions and chaotic solutions.

where                                       , and the initial condition are            

system states are highly dependent on historical states and 
exhibit strong nonlinear interactions. Due to the presence of 

-

divergence, introducing uncertainty into data-driven 

the testing set are shown in Fig. 3 and Table 4.

Figure 2 and Table 3 shows that:

1) Comparison with the BLS: On the Housing dataset, IT3F-
BLS reduces RMSE by approximately 23.6% compared to the 

capturing the complex nonlinear relationships and uncer-
tainties present in housing price data.
2) Comparison with FNN and IT2FNN: IT3FBLS consis-
tently outperforms both FNN and IT2FNN. On the Housing 
dataset, IT3FBLS achieves a lower RMSE than both FNN and 
IT2FNN, with corresponding improvements in MAE and 

logic allows for more accurate representation of uncertainty, 
leading to enhanced predictive performance. Similarly, on 
the CCS and Abalone datasets, IT3FBLS maintains a lower 

performance improvements over FNN and IT2FNN range 
from 8%–20% in RMSE and MAE, while R2 increases by 

fuzzy structures in handling complex data.
3) Compared to FBLS and IT2FBLS: IT3FBLS ranks among 
the best-performing methods across all evaluation metrics. 
On the Abalone dataset, while FBLS and IT2FBLS achieve 
strong results, IT3FBLS further reduces RMSE and 
improves R2. IT3FBLS emerges as one of the top two meth-
ods in both RMSE and R2, indicating that the entro-
py-adaptive regularization and gradient-based secondary 

accuracy and generalization ability.
4) Ablation study Analysis: IT3FBLS-1, which omits the 
proposed parameter learning algorithm, exhibits a decline 
in R2. IT3FBLS-2, which retains entropy-weighted regular-
ization but removes GD-based secondary optimization, 

complexity, leading to consistently lower errors and higher 

equations:
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(a) Mackey-Glass

(b) Rossler system

Figure 3: Prediction results of the testing set of uncertain function dataset

Table 4: Performance comparison results of the testing set in the uncertain function dataset

Macke
y

– Glass

Datase
ts Methods RMSE MAE R2 

Mean Var Best Mean Var Best Mean Var Best 

BLS 2.9764E-
01 

3.9052
E-01 

3.3935E-
02 

2.2310E-
02 

2.7710
E-02 

3.7310E-
03 

2.5341E+
01 

9.2931
E-01 

9.8257E-
01 

FNN 2.3121E-
02 

6.6905
E-03 

1.2152E-
02 

1.8167E-
02 

4.8734
E-03 

9.7597E-
03 

9.9130E-
01 

4.7095
E-03 

9.9776E-
01 

FBLS 2.4116E-
03 

1.5833
E-04 

2.2007E-
03 

1.9114E-
03 

1.1725
E-04 

1.7442E-
03 

9.9861E-
01 

1.2254
E-05 

9.9913E-
01 

IT2FNN 4.3339E-
02 

8.2000
E-03 

3.0138E-
02 

3.2803E-
02 

5.5523
E-03 

2.2987E-
02 

9.7060E-
01 

1.1591
E-02 

9.8625E-
01 

IT2FBL
S 

2.3594E-
02 

1.0772
E-02 

1.1484E-
02 

1.8609E-
02 

8.4352
E-03 

9.9888E-
03 

9.8991E-
01 

9.7716
E-03 

9.9800E-
01 

IT3FBL
S-1 

8.7532E-
02 

4.6528
E-03 

7.9216E-
02 

7.0162E-
02 

4.2087
E-03 

6.2543E-
02 

8.8373E-
01 

1.2219
E-02 

9.0502E-
01 

IT3FBL
S-2 

1.4820E-
02 

7.8595
E-04 

1.3528E-
02 

1.1452E-
02 

6.0698
E-04 

1.0386E-
02 

9.9667E-
01 

3.5497
E-04 

9.9723E-
01 
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Figure 3 and Table 4 show that: 

mechanism, has limited nonlinear modeling capability, 
resulting in higher prediction errors. In contrast, the IT3F-

performance improvements in uncertain function modeling 
tasks. In the Mackey-Glass chaotic sequence modeling task, 
the average RMSE of IT3FBLS is reduced by approximately 
95% compared to BLS, with the MAE decreased by 54%. 

over 0.997 for IT3FBLS. In the Rössler system modeling task, 
the average RMSE and MAE of IT3FBLS are reduced by 

-
tation of input-output uncertainties by the third-order fuzzy 
sets. By deeply integrating the fuzzy feature layer with the 
BLS broad learning architecture, IT3FBLS achieves more 
precise mathematical modeling of complex nonlinear 
relationships.

advantages on the Mackey-Glass dataset: the RMSE and 

increases from 0.9913 to 0.9972. Compared to IT2FNN, the 
reduction in RMSE and MAE reaches 69%. Notably, in 
Rössler system modeling, even though FNN has achieved 

-
ger adaptability. Compared to IT2FNN, its RMSE and MAE 
are reduced by 81% and 92.8%, respectively. Overall, IT3F-
BLS outperforms FNN in most cases, especially in the Mack-
ey-Glass task, showcasing the superiority of higher-order 

fuzzy modeling in handling complex dynamic systems. 

introduction of third-order fuzziness enhances the model’s 

better performance on these datasets than neural networks 
using only T2FS. 
3) Comparison with IT2FNN: IT3FBLS combines the 

strong uncertainty representation capability of the T3FS. 
-

ing capability but also addresses the shortcomings of T2FS 
-

ness, by introducing a degree of membership to the mem-

fuzzy rules, allowing the model to maintain high precision 

introduction of BLS provides the ability to quickly expand 
-

high accuracy.
4) Comparison to FBLS and IT2FBLS: In the Mackey-Glass 
system, the average RMSE of IT3FBLS is slightly higher 
than that of FBLS, but its optimal RMSE is close to FBLS, 

FBLS outperforms IT3FBLS in terms of average perfor-

models exhibit comparable stability. However, IT3FBLS 
demonstrates superior generalization ability in more 
complex scenarios. In the Rössler system, IT3FBLS reduces 

IT3FBL
S 

1.3573E-
02 

3.8224
E-04 

1.2991E-
02 

1.0227E-
02 

2.7178
E-04 

9.8179E-
03 

9.9721E-
01 

1.5743
E-04 

9.9845E-
01 

Rossle
r 

system 

BLS 5.1297E-
01 

3.2984
E-03 

4.1499E-
01 

6.4590E-
02 

2.0603
E-04 

3.6554E-
04 

9.4233E+
01 

1.7868
E-04 

9.7453E+
00 

FNN 1.4850E-
01 

2.8354
E-01 

1.8088E-
01 

5.9146E-
02 

8.9973
E-02 

5.1575E-
03 

9.9580E-
01 

1.2641
E-02 

9.9129E-
01 

FBLS 1.7019E-
03 

3.1604
E-03 

1.5816E-
06 

7.4489E-
04 

2.3595
E-03 

1.0278E-
06 

9.9911E-
01 

1.5678
E-04 

9.9929E-
01 

IT2FNN 1.1028E+
00 

2.1280
E-01 

5.1417E-
01 

7.4501E-
01 

1.2732
E-01 

3.7827E-
01 

9.4394E-
01 

2.0560
E-02 

9.8823E-
01 

IT2FBL
S 

5.7999E-
01 

6.0014
E-01 

1.6707E-
01 

3.4652E-
01 

3.9376
E-01 

8.3696E-
02 

9.6979E-
01 

7.5461
E-02 

9.9876E-
01 

IT3FBL
S-1 

1.7675E+
00 

2.2979
E-01 

1.5419E+
00 

1.4358E+
00 

2.5266
E-01 

1.1590E+
00 

8.5878E-
01 

3.7874
E-02 

8.9415E-
01 

IT3FBL
S-2 

2.0261E-
01 

2.2748
E-02 

1.7888E-
01 

7.7464E-
02 

2.2375
E-03 

6.3005E-
02 

9.9815E-
01 

4.3197
E-04 

9.9858E-
01 

IT3FBL
S 

2.0795E-
01 

5.9879
E-02 

1.2618E-
01 

5. 3515E-
02 

1.0391
E-02 

4.4466E-
02 

9.9793E-
01 

1.2413
E-03 

9.9929E-
01 
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the average RMSE by 64.15% and the MAE by 84.55% 
-

ing the theoretical limit. Given that IT3FBLS introduces a 
more complex third-order fuzzy uncertainty modeling 
approach, its advantages are expected to be even more 
pronounced in environments with noise or higher uncer-

achieved performance levels comparable to the most 

improves predictive accuracy. It combines the ensemble 
learning characteristics of FBLS with the powerful represen-
tational capabilities of T3FS, thus outperforming earlier 
IT2FBLS models. Overall, the key improvement of IT3FBLS 
over existing ensemble models lies in its handling of 

fuzzy sets, achieves high accuracy but does not explicitly 
account for the uncertainty in membership degrees. IT2F-
BLS introduces uncertainty modeling for membership 
degree intervals but may increase model complexity and 

the credibility of the membership function itself through 

representation. As a result, IT3FBLS has a potential advan-
tage in tasks where generalization ability and noise robust-
ness are critical.
4) Ablation experiment analysis: In IT3FBLS-1, its perfor-

the average RMSE of IT3FBLS-1 increases approximately 

about 11%. In the Rössler system, the impact is even more 
pronounced, with RMSE increasing by more than 750% 

that removing the entropy-based parameter learning 
algorithm leads to a dramatic increase in error and a severe 

-
ships. In IT3FBLS-2, Experimental results show that in the 
Mackey-Glass system, the RMSE of IT3FBLS-2 is slightly 
higher than the full model, while in the Rössler system, the 

demonstrates that the gradient-based second-order 
-

ing parameter oscillations and improving model stability.

4.3.3 Complex Industrial Process Dataset

 In this article, the modeling of two complex indus-
trial processes, the MSWI process and the TE process, is 

storage and transportation, solid waste combustion, waste 

of the solid waste combustion stage are directly linked to 
the overall stable operation of the plant and pollutant 
emissions [38]. Its process structure is shown in the Figure 
4.
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developing countries, such as China, and developed coun-

developing countries. In the manual mode, domain experts 
typically rely on their human brain models to predict the 
trends of key controlled variables, and then determine the 

output values of manipulated variables
 Tennessee Eastman (TE) process is a complex 
chemical process with strong variable coupling and nonlin-

-
ical Company in the United States to provide a realistic 
industrial process for evaluating fault detection and 
variable prediction methods. Its process structure is shown 
in the Figure 5.

 As can be seen in Fig. G1, the TE process contains 
eight constituent variables: A, B, C, D, E, F, G, and H. Of 
these, A, C, D, and E are reactants, B is an inert, G and H are 
the main products generated by the reactor, and F is a 

sampling interval of 3mins and contains a total of seven 
feature variables, namely: A feed (stream 1), D feed (stream 

(stream 8) and E component (stream 11) [40]. 

 In the MSWI process, the furnace temperature is a 

emissions, and system stability. However, due to the 
complex composition of waste, uneven combustion charac-
teristics, and external environmental disturbances, the 

accurately modeling furnace temperature not only aids in 
optimizing incineration control and improving energy 

reduction of pollutants such as dioxins (DXN) and nitro-
gen oxides (NOx). 

 In the TE process, a typical industrial chemical 
process, involves a reactor where temperature is a key 
variable determining the reaction rate and product quality. 
As the system includes complex heat exchange and 
reaction dynamics, its dynamic behavior also presents 

uncertainty, sampling intervals, and input/output variables 
for both the MSWI and TE processes are summarized in 
Table 5.

Figure 5: Structure diagram of Tennessee Eastman process



Table 5: Uncertainty sources, sampling intervals, and process variable descriptions for the MSWI process and 
the TE process
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 Source of uncertainty Sampling 
interval (min) 

Input variable Output 
variable 

MSWI 
process 

Fuel composition fluctuations, 
air supply, combustion 
dynamics, strong nonlinear 
combustion, turbulent heat 
transfer, operating condition 
fluctuations 

1 Primary air volume, secondary air 
volume, average feeder speed, average 
drying grate speed, ammonia injection 
volume 

Furnace 
temperature 

TE 
process 

Reaction kinetics, heat 
exchange, material transport, 
multi-step chemical reactions, 
thermodynamics, fluid 
transport, transport failures and 
abnormal conditions 

3 D feed rate (stream 2), E feed rate (stream 
3), A feed rate (stream 1), total feed rate 
(stream 4), compressor recirculation 
valve, discharge valve (stream 9), 
separator tank liquid flow (stream 10), 
stripper liquid product flow (stream 11), 
stripper water flow valve, reactor cooling 
water flow, condenser cooling water flow 

Reactor 
temperature 

 

(a)MSWI Process

(b) TE process

Figure 6: Prediction results of the testing set of complex industrial process data sets



Figure 6 and Table 6 show that:

1) Comparison with the BLS: In the MSWI process, the 
standard BLS performs poorly on the MSWI furnace 
temperature modeling. Its mean RMSE far higher than IT3F-

-

essentially zero, indicating almost no predictive power, 

can capture the furnace’s complex dynamics and uncertain-
ties that BLS misses. In more challenging TE process model-

while IT3FBLS demonstrates a clear advantage. Unlike 

showcasing superior modeling capabilities. Quantitative 
results reveal that IT3FBLS reduces RMSE by over 98% 
compared to BLS, successfully transforming a previously 
unusable model into a feasible model with moderate 

unexplained variability still exists in the TE reactor 
temperature, IT3FBLS at least provides a usable model, 

highlights that the nonlinear modeling capability of IT3F-
BLS in the TE process makes it more robust and applicable 
in complex industrial scenarios.
2) Comparison with FNN and the IT2FNN: Both the FNN 
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Table 6: Performance comparison results of the testing set in complex industrial process data sets

Datase
ts Methods RMSE MAE R2 

Mean Var Best Mean Var Best Mean Var Best 

MSWI 

BLS 4.2869E+
01 

1.9537E+
01 

1.8329E+
01 

1.5747E+
01 

3.7545E+
00 

1.1383E+
01 

5.0442E+
00 

5.3205E+
00 

7.7202E-
02 

FNN 1.8251E+
01 

1.2451E-
01 

1.8123E+
01 

1.4488E+
01 

1.4933E-
01 

1.4272E+
01 

8.4970E-
02 

1.2505E-
02 

9.7762E-
02 

FBLS 1.3577E+
01 

5.2206E-
01 

1.2591E+
01 

1.0832E+
01 

4.4640E-
01 

1.0033E+
01 

4.9293E-
01 

3.8997E-
02 

5.6452E-
01 

IT2FNN 1.4292E+
01 

3.6553E-
01 

1.3677E+
01 

1.1703E+
01 

3.7454E-
01 

1.0961E+
01 

4.3853E-
01 

2.8698E-
02 

4.8619E-
01 

IT2FBL
S 

1.6738E+
01 

4.4930E-
01 

1.6093E+
01 

1.3856E+
01 

2.8086E-
01 

1.3419E+
01 

2.2992E-
01 

4.1974E-
02 

2.8854E-
01 

IT3FBL
S-1 

1.0180E+
01 

1.6538E-
01 

9.9034E+
00 

7.7655E+
00 

8.6324E-
02 

7.5849E+
00 

7.1528E-
01 

9.2605E-
03 

7.3059E-
01 

IT3FBL
S-2 

9.9189E+
00 

1.5445E-
01 

9.7150E+
00 

7.5013E+
00 

1.3604E-
01 

7.2075E+
00 

7.2968E-
01 

8.4652E-
03 

7.4074E-
01 

IT3FBL
S 

9.1893E+
00 

1.7770E-
01 

8.6750E+
00 

7.2749E+
00 

1.8865E-
01 

7.0219E+
00 

7.4554E-
01 

2.0913E-
02 

7.6339E-
01 

TE 
proces

s 

BLS 5.9468E+
01 

1.2131E+
02 

4.7453E+
00 

9.2506E+
00 

1.1582E+
01 

2.5239E+
00 

-
1.1923E+

04 

4.4483E+
04 

-
1.4329E+

01 

FNN 1.0766E+
00 

6.7992E-
02 

9.9546E-
01 

8.5259E-
01 

5.8838E-
02 

7.9559E-
01 

2.0840E-
01 

1.0168E-
01 

3.2542E-
01 

FBLS 1.1011E+
00 

4.5375E-
02 

1.0186E+
00 

8.7610E-
01 

2.7352E-
02 

8.2791E-
01 

1.7336E-
01 

6.7758E-
02 

2.9376E-
01 

IT2FNN 1.0602E+
00 

6.8572E-
02 

9.7473E-
01 

8.3604E-
01 

5.4041E-
02 

7.6247E-
01 

2.3175E-
01 

1.0123E-
01 

3.5323E-
01 

IT2FBL
S 

1.1221E+
00 

6.5875E-
02 

9.8712E-
01 

9.1175E-
01 

5.2059E-
02 

8.1825E-
01 

1.4005E-
01 

9.9557E-
02 

3.3667E-
01 

IT3FBL
S-1 

1.1244E+
00 

4.1835E-
02 

1.0725E+
00 

9.2102E-
01 

3.6988E-
02 

8.7056E-
01 

1.3816E-
01 

6.4728E-
02 

2.1698E-
01 

IT3FBL
S-2 

1.0650E+
00 

4.2266E-
02 

1.0090E+
00 

8.7492E-
01 

3.8107E-
02 

8.1693E-
01 

1.8214E-
01 

6.2344E-
02 

3.0688E-
01 

IT3FBL
S 

1.1102E+
00 

8.1063E-
02 

9.4379E-
01 

8.8026E-
01 

5.8782E-
02 

7.4087E-
01 

1.5670E-
01 

1.2226E-
01 

3.9363E-
01 

 



and the IT2FNN perform better than BLS on the MSWI 
problem, but they are outperformed by IT3FBLS. IT3FBLS 
yields roughly 50% lower RMSE than FNN and 36% lower 

explained variance by a large margin (about 30% higher than 

fuzzy modeling captures the furnace temperature dynamics 
much more accurately than the simpler type-1 or type-2 

more expressive uncertainty representation, leading to better 
generalization in this complex process. On the TE process, 
the fuzzy neural approaches FNN and IT2FNN achieve 
decent accuracy. IT3FBLS’s mean RMSE is slightly higher 

IT2FNN’s. However, IT3FBLS achieved the highest best-case 

superior model of the reactor temperature under the right 

be due to the TE process’s characteristics. Nonetheless, 
IT3FBLS’s ability to match the fuzzy neural networks on 
accuracy while providing a richer uncertainty handling 

-

from the BLS which can integrate features in parallel and 

IT2FNN handles only interval uncertainty in membership 
functions. IT3FBLS extends this to a higher-order fuzzy 
representation, capturing more complex and dynamic 
uncertainty.
3) Comparison to FBLS and IT2FBLS: FBLS and IT2FBLS 
are advanced ensemble models that combine fuzzy logic with 
BLS. While FBLS uses Type-1 fuzzy logic, IT2FBLS employs 
Type-2 fuzzy logic. In MSWI process, the FBLS and IT2FBLS 
models show improved accuracy over basic BLS and fuzzy 
networks alone. However, IT3FBLS outperforms both, with 
RMSE is 32% lower than FBLS and 45% lower than IT2FBLS. 

and more than triple IT2FBLS. Even the best-case RMSE of 

gains demonstrate that moving from type-1 and type-2 fuzzy 
logic to type-3 fuzzy logic within the broad learning ensem-

likely involves uncertainties that type-3 fuzzy BLS handles 

TE process, the advanced ensemble models all perform 

-
BLS did not consistently dominate in every run, it has the 
most potential when conditions are right, likely due to its 
more expressive model. In practical terms, all ensemble 
fuzzy BLS models handle the TE reactor problem far better 
than plain BLS, but IT3FBLS provides the strongest overall 
capability, especially under varying conditions or if further 
optimized. In the TE process, when nonlinear factors 
dominate over uncertainty, the BLS framework is already 
well-equipped to handle the core complexities, leading to 
similar performance among all fuzzy logic-based BLS 
variants. Nevertheless, IT3FBLS does not compromise 
prediction accuracy and performs at least at the level of the 

for improvement in handling uncertainty factors.

IT3FBLS-1 and -2 are higher than full IT3FBLS. In terms of 

IT3FBLS reduces MAE by 3.2% compared to IT3FBLS-2 
and 6.3% compared to IT3FBLS-1, and its best-case RMSE 

not enormous, are consistent: IT3FBLS is better on every 

component removed in the ablations does play a role in 

uncertain MSWI problem suggests that the combination of 
broad learning and type-3 fuzzy logic is synergistic – 
removing parts leads to a noticeable drop in accuracy. On 
the TE task, the ablation results are more mixed. IT3F-
BLS-2 had a slightly lower mean RMSE than full IT3FBLS 

However, as noted, IT3FBLS had the best optimal perfor-

leads to better solutions, but might also introduce more 

supports this interpretation – the full model is more 
-

timal solutions on this dataset. Nonetheless, the fact that 
IT3FBLS -1 and -2 don’t consistently outperform the full 

-

those components likely prove crucial. For TE process, it 
appears the full IT3FBLS is at least as good as the best 
ablation on average, and it retains a higher ceiling for 
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performance. With further tuning or ensemble averaging, 
the full model could likely surpass the ablations outright 
even in TE.
Overall, the type-3 fuzzy component and the ensemble broad 
feature learning are complementary – the former improves 

ensures strong function approximation and generalization. 
-

tently match the full IT3FBLS, especially in the face of 
complex, uncertain industrial data like MSWI process.
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4.4 Hyperparameter Analysis BLS, using the MSWI process dataset as an example. 
Detailed information about the hyperparameter settings is 
provided in Table 2. 

Fig. 7 shows the results as follows:

IT3FBLS performance. When      within the range of [0, 0.3], 

-

J

stabilizes, indicating diminishing returns in performance 
with an increasing number of rules. Furthermore, when  J             
exceeds 80, it negatively impacts model performance; 

K leads to the most 

L generally exhibits a 
positive correlation with model performance; however, 
when L exceeds 500, further improvements are marginal. 

in the ranges [0.2, 0.4] and [0.45, 0.65], but when it exceeds 
0.7, large step sizes in parameter updates may cause the 
model to get stuck in local optima, resulting in perfor-
mance degradation. 

M  maintains high 
model performance only within the [10, 200] range. When 
exceeding 200, both model performance and computation-

J are highly sensitive hyperpa-
-

preferably through grid search or heuristic optimization. L 
and M  
are related to the computational complexity of the model. 

based on domain knowledge to avoid unnecessary expan-
sion.  K and   to the model is lower sensitive, and their 
values   can  be   dynamically  adjusted   through   heuristic 

Figure 7: Parameter sensitivity of IT3FBLS
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5. Conclusion

 A novel BLS model for uncertain data regression, 
termed IT3FBLS, is proposed in this article. To overcome the 
limitations of traditional fuzzy systems in high-order uncer-

-
ties while simplifying the complexity of model parameter 

generalization capabilities in noisy or non-stationary 
environments, an entropy-based weighted adaptive regular-
ization and gradient-based quadratic optimization parame-

feature contribution, thereby improving robustness to noise 
and uncertainty. A systematic comparison of IT3FBLS with 
several conventional methods in the context of uncertainty 
regression modeling is conducted. Experiments are 

performed on datasets of varying scales and dimensions, 
uncertain functions, and real-world industrial process data. 

model accuracy and stability with a limited number of 
training samples. Moreover, it exhibits lower dependence 
on hyperparameters when handling multi-source hetero-
geneous data and high-dimensional noise, showcasing its 
inherent robustness and adaptability. Notably, IT3FBLS 
maintains strong performance across diverse scenarios, 
remaining insensitive to changes in data dimension and 

high-dynamic industrial processes and other uncertain-
ty-driven applications.

 Future research focuses on further reducing the 
computational overhead of IT3FBLS while enhancing its 

such as real-time control and online modeling. Additional-
ly, incorporating advanced ensemble learning mecha-
nisms, parameter learning, and incremental learning meth-
ods into the IT3FBLS framework is to be essential for 

multi-task collaboration in dynamic environments.
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