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Abstract

The sizable amount of data generated by high throughput cell biology is increasing the demand on traditional computational 
tools in bioinformatics to handle large input datasets. Large sequence data sets create intractable search spaces that are be-
yond the scope of many conventional algorithms. One way to address this problem is to transform large sequence data sets to 
the constituent parts that characterize the features of interest (e.g. transcription factor binding sites, miRNA sites, etc.) of the 
problem. These features of interest take the form of k-mers in a large subset of problems in computational biology. K-mers 
also play an implicit role in many other bioinformatics functions from microarray probes to genomic compositional analy-
sis.Given the increasing potential for k-mers in a wide spectrum of applications in bioinformatics we present in this paper a 
set of fast and efficient generic algorithms for enumerating the occurrence frequen-cies of all substrings of a given length (k-
mers) in whole genome sequences. Described are three algorithms of increasing complexity designed to deal with different 
k-mer lengths from short (couple of bases) to very long (tens of thousands of bases). They are memory based algorithms that 
use advanced heuristics to efficiently process large amounts of data that arise when analyzing very long genome sequences.
The algorithms were tested for performance on the human, mouse, 681 bacteria and 50 archaea genome sequences. Results 
are described for both time and space utilization. We also describe several different experiments that demonstrate the utility 
of these algorithms. These algorithms can be downloaded from http://www2.kumc.edu/siddrc/bioinformatics/publication.
html.

©2013 The Authors. Published by the JScholar under the terms of the Crea-
tive Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and 
source are credited.
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Introduction
K-mers play an implicit but very important role in many appli-
cations in computational biology as they form the character-
izing unit of many interesting DNA sequences. For example, 
a transcription factor can be represented as a subset of 8-mers 
or 10-mers or some other k-mer, microarray probes can be 
defined as a collection of 25-mers, or some other suitable k-
mer of choice, etc. It makes analysis of these sequence features 
very fast and very efficient if we can breakdown very long se-
quences (from for example Chip-sequence data or whole ge-
nome sequences) into their representative k-mers of interest. 
While on one hand this provides a lot of information on the 
relative abundance of different k-mers (useful for example in 

tasks such as generating microarray probes), it also enables 
us to drastically reduce the search space for applications such 
as motif detection (especially important when scanning for 
motifs in hundreds of sequences with lengths over thousands 
of bases). The problem is not trivial when relatively large k-
mers in long DNA sequences are sought. The algorithms that 
we present in this paper are generic and can easily assist with 
or incorporate to any one of the many applications that uti-
lize k-mers in their analysis.With the advent of large-scale ge-
nome sequencing projects (over 4600 completed or ongoing 
genome sequencing projects worldwide, [1]), there has being 
an exponential growth in the number of whole genome se-
quence data added to the literature (over 900 fully sequenced 
genomes to date, [1]). With this growth comes an increasing 
demand for efficient computational tools for analyzing this 
data. Counting the number of unique k-mers in a sequence is 
one such tool widely used in genomic analysis. k-mer analy-
sis has wide ranging applications varying from whole genome 
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compositional analysis to comparative genomics. Many nucle-
otide sequences of interest such as transcription factor bind-
ing sites, ribosome binding sites, microRNA sites, restriction 
sites, splice sites, primer sequences, probe sequences, etc. can 
be characterized by k-mers.

A k-mer is a string of length k over an alphabet Σ, where Σ is 
the four nucleotide bases {A; C; G; T}, for DNA sequences. In 
traditional k-mer analysis, k varies between 1 and 12. How-
ever, we are interested in unrestricted values of k making the 
problem much more computationally challenging in the man-
agement of both time and space (memory). k-mer analysis 
involves computing the frequencies of all distinct sub-strings 
of length k appearing in an analyzed sequence. While k-mer 
analysis using system memory forsmall values of k on short 
sequences of several thousand bases can be accomplished with 
relative ease (see [2], where the authors describe a tool AS-
SIRC which uses hashing functions to find fixed sized regions 
of similarity which are then extended by a random walk pro-
cedure), the problem becomes challenging when long k-mers 
on whole genome sequences with lengths over a million bases 
in a single chromosome accumulating to over a billion bases 
in total are considered. Existing algorithms deal with longer 
k-mers by using external memory (see [3], which describes 
the tool REPuter which computes maximal repeats of an in-
put sequence. It does this by building a suffix tree of the input 
sequence and performing a depth first traversal of the tree to 
locate all the nodes representing maximal repeats) which is 
unlike the case of the proposed algorithms which work only 
with internal memory.

In this paper we describe three algorithms with increasing 
complexity for counting k-mers. The first of these algorithms 
is designed for high-level programming languages (such 
as Matlab and R) where system memory is considerably re-
stricted in both capacity and organization. This algorithm, 
depending on the available system memory, works efficiently 
for small values of k (up to 8 to 12) with no restriction on the 
length of the input sequence. The second algorithm builds on 
the conceptual framework of the first but allocates memory 
parsimoniously. As a result, it is able to compute counts for 
larger values of k (up to 16). The third algorithm uses heu-
ristics to extend the functionality of the second algorithm to 
potentially unrestricted values of k. The striking feature of all 
three proposed algorithms is that they work with internal sys-
tem memory as opposed to external memory as is the general 
case with algorithms that have to deal with very large data 
sets (see [4, 5], which describes SequeX, a tool that uses static 
SB-trees that are indexed data structures for external memory 
for analyzing k-mers ). As a result they are very fast and con-
venient to amalgamate with different applications. Other algo-
rithms are limited in the k-mer length they could analyze (see 
[6] which describes the program Jellyfish which is based on a 
multithreaded lock-free hash table. It uses a bit-packed data 
structure for memory efficiency. This algorithm is however 
limited to a maximum k-mer length of 31 bases) which is not 
the case with the proposed algorithms.

Results
Algorithm 01: A Linear-Time Algorithm for short 
k-mer Analysis of Whole Genome Sequences
The first algorithm that we describe computes frequencies of 
all bk different strings (where b is the cardinality of the alpha-
bet Σ) of length k in a sequence of length n in O(n) time. How-
ever, as it employs a constant linear array of bk elements to 
store the bk different frequencies, it is encumbered by available 
memory as k grows. As a result, this algorithm is only suitable 
for computing k-mer frequencies for small values of k (up to 
k=12), and is principally proposed as an efficient implemen-
tation in high level programming languages (such as Matlab 
and R) that lack the conveniences of flexible dynamic memory 
allocation routines.

The proposed algorithm is a variation of the Rabin and Karp 
[7] stringing matching algorithm. It maps each nucleotide to 
an integer in radix-b and uses this integer representation to 
uniquely index each k-mer pattern as a base b number where 
b = |Σ|. For example, if the nucleotides {A; C; G; T} are trans-
formed using the transformation (A7→0; C7→1; G7→2; T7→3) 
to give a corresponding integer representation in radix-4 nota-
tion, we can view every k-mer (and its reverse compliment) as 
a length k number in base-4 (see Figure 1. (a)). The idea is to 
compute the index of each successive transformed k-mer (and 
its reverse compliment) in O(1) time. This idea is made precise 
in the k-merCount algorithm described in Methods.

Figure 1. Computation of indices by the k-merCount algorithm. The figure 
illustrates the computation of successive indices of every 3-mer and its reverse 
complement of the sequence ACCAGTC. (a) The radix-3 representation of 
the sequence and its reverse compliment and the indices of each successive 
3-mer and its reverse compliment of the sequence. (b) Computation of suc-
cessive indices. (c) Graphical illustration of the computation of the index of a 
3-mer and its reverse compliment in constant time given the index and reverse 
compliment index of its predecessor.

Algorithm 02: An Optimal-Time Algorithm for k-
mer Analysis
The second algorithm described below called GK-MER-
COUNT  can compute k-mer frequencies for larger values of 
k (up to k=16 in a computer with 2Gb of internal memory but 
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could deal with larger values of k with the increase in inter-
nal memory or for smaller genomes) than the k-mer-Count 
algorithm. It achieves this by parsimoniously allocating space 
when storing individual k-mer counts. Instead of storing fre-
quencies of all bk different k-mers as the k-mer-Count algo-
rithm does, this algorithm only stores those k-mer frequen-
cies (and their reverse compliments) that appear in the input 
sequence. The GK-MER-COUNT  algorithm takes advantage 
of the fact that although there are bk possible patterns of length 
k, there could only be at most n−k + 1 different patterns in a 
sequence of length n, hence, the actual number of different 
patterns, M≤ min(bk; n−k + 1), is linearly bound for large val-
ues of k.

Figure 2. The k-mer tree. The figure illustrates the components and terminol-
ogy associated with a k-mer tree.

The GK-MER-COUNT algorithm uses a special dynamic tree 
data structure which we call a k-mer tree (see Figure 2.) for 
holding the frequencies of all sub-sequences of a specified 
length occurring in agiven sequence. A k-mer tree is a modi-
fied full n-array tree where n = |Σ| = b, (for example, n = 4 for 
Σ = {A, C, G, T}). A k-mer tree for counting the frequencies of 
all length k sub-strings of a sequence will have height k. Every 
branch node of a k-mer tree is a b element array of pointers re-
ferring to either a branch node or a leaf node. Each element of 
the array (branch node) implicitly refers to a unique element in 
Σ by way of its index (e.g. index(0)    A, index(1)    C, index(2)rr    
G, index(3)   T ). In a k-mer tree, a complete branch or simply 
a branch is a branch that starts from the internal branch node 
at depth 0 and ends in a leaf node at depth k. An incomplete-
branch or a sub-branch of the tree is a branch that starts from 
the internal branch node at depth 0 and ends in an external 
branch node at depth k− 1 and hence not complete (does not 
have a leaf node). A k-mer tree has only complete and incom-
plete branches as defined above. Every branch of a k-mer tree 
represents a unique k-mer whose sequence is read implicitly 
from the index of the pointers along its path. Every leaf node of 
the tree has three essential elements, a counter to hold the fre-
quency of its representative k-mer, a suffix pointer which is set 
to point to the external branch node of the sub-branch forming 
its length k− 1 suffix and a reverse compliment pointer, rcomp, 
set to point to the leaf-node of its reverse compliment.

Figure 3. A full 4-mer-tree. A full 4-mer-tree for counting the frequencies of 
distinct 4-mers in a sequence comprising of characters, and . As the tree is a 
complete 4-mer tree, it has only complete branches. Every branch represents 
a distinct 4-mer. Every leaf node points to an external branch node that is the 
external branch node of the sub branch representing the suffix of the 4-mer 
along the branch to the leaf node. In analogy to the k-mer-Count algorithm 
described in Section , moving from a leaf node to the external branch node 
represents a shift to the left by one position of the radix b digit of length k (in 
this case, a binary digit of length 4). Proceeding down to a leaf node is analo-
gous to adding a new digit as a lowest order digit of the k-digit radix-b number 
(4-digit binary number).

The GK-MER-COUNT  algorithm is conceptually similar to 
the k-mer-Count algorithm described above. This is demon-
strated in Figure 3. on a binary alphabet, Σ = {;}, for count-
ing the frequencies of all 24, 4-mers of a sequence. The GK-
MER-COUNT  algorithm uses a circular buffer (of length k) to 
keep track of successive k-mers as characters are read from the 
input sequence thereby maintaining a linear read time while 
still retaining access to the full k-mer sequence at a particular 
instance. The complete GK-MER-COUNT  algorithm is de-
scribed in detail in Methods. However, in brief, the algorithm 
works as follows: Branches of a k-mer tree represent distinct 
k-mers. Adding or completing a branch in a k-mer tree in the 
context of the GK-MER-COUNT  algorithm involves 1) add-
ing the complete branch representing the k-mer (from the root 
node to the leaf node) or completing the branch by adding a 
leaf to the appropriate external branch node, 2) adding the sub 
branch representing the k− 1 suffix of the k-mer, 3) adding the 
branch representing the reverse compliment of the k-mer, and, 
4) adding the sub branch representing the k− 1 suffix of the 
reverse compliment. Sequence information of the k-mer nec-
essary for this task is red from the circular buffer mentioned 
above. A pointer is established from the leaf node of the k-mer 
branch to the external branch node of its suffix sub branch. 
Similarly, a pointer is established from the leaf node of the re-
verse compliment branch to the external branch node of the 
reverse compliment’s suffix sub branch. A pointer is also estab-
lished between the leaf nodes of the k-mer branch and its re-
verse compliment branch. The GK-MER-COUNT  algorithm 
maintains a prefix pointer that always points to the external 
branch node of the sub branch that forms the k− 1 prefix of 
the next k-mer.

In the initialization step, the first branch of the k-mer tree is 
added representing the first k-mer of the input sequence. The 
prefix pointer is directed to the external branch node of its 
suffix sub branch. Note that the prefix pointer now points to 
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the external branch node of the prefix sub branch of the next 
k-mer. Now, at a particular instance of the algorithm, when the 
next character is read, the algorithm checks whether the leaf 
node for the read character exists in the external branch node 
pointed to by the prefix pointer. If the leaf node does exist 
(the k-mer is already in the tree), the algorithm simply incre-
ments its frequency counter and that of its reverse compliment 
(using the rcomp pointer) and using the information in the 
suffix pointer of the leaf node, moves the prefix pointer to the 
external branch node of the suffix sub branch of the k-mer. If 
the leaf node does not exist (the k-mer has not yet being added 
to the tree), it is added along with the sub branch represent-
ing the k − 1 suffix of the k-mer, the branch representing the 
reverse compliment of the k-mer and the sub branch repre-
senting the k − 1 suffix of the reverse compliment. As before, 
pointers are established from the leaf nodes to the respective 
external branch nodes of the suffix sub branches. A pointer is 
also established between the leaf nodes of the complimentary 
branches. The prefix pointer is moved to the external branch 
node of the suffix sub branch of the k-mer. A simple example 
underlying the above process is illustrated in Figure 4.

The GK-MER-COUNT  algorithm has a running time of Θ(M 
(k − 1) + n), where M is the actual number of distinct k-mers in 
the input sequence. At its worst case, the algorithm has O(nk) 
running time. This occurs when every length k sub sequence 
of the input sequence is distinct, i.e. M = n. However, in prac-
tice M is a lot smaller than n due to multiple occurrences of 
distinct k-mers. On average, given an equal nucleotide distri-
bution on the input sequence, one would expect to see n=4k 
hits per k-mer. According to this statistic the expected number 
of multiple occurrences per distinct k-mer decrease exponen-
tially with the increase in k resulting in larger trees. This prob-
lem is addressed in the next algorithm described below.
A complete k-mer tree, i.e., a k-mer tree representing all bk 
distinct k-mers will have bk leaf nodes and (bk− 1)=3 branch 
nodes. This is space wise manageable for small values of k. As 
explained above, for large values of k, the actual number of 
distinct k-mers, M , in the input sequence is linearly bound 
therefore the size of the k-mer tree is upper bound by the 
length of the input sequence. In the worst case, the GK-MER-
COUNT  algorithm is linear in space (see Figure 5 (A)). The 
GK-MER-COUNT  algorithm is suitable for counting the k-
mer frequencies of DNA sequences for moderate values of k 
(up to k =16 in a machine with 2Gb of internal memory but 
could support larger k in machines with larger memory or for 
smaller genomes).

Figure 4. Example: step by step creation of a k-mer tree. The figure demon-
strates the creation of a k-mer tree for counting the frequencies of different 
3-mers in sequence AATATTATAA. For simplicity we assume Σ = {A; T 
}. In the full 2-ary tree that is generated, we assume that, the left cell of a 
branch node represents A and the right cell represents T (in practice, these 
will be pointers with only implicit reference to the nucleotide). Every time a 
leaf node is added or visited, the counter for its respective k-mer and that of 
its reverse compliment are incremented by one. In the initialization step in 
(a), the branch AAT is added followed by the sub-branch of its suffix AT. A 
pointer is established from the leaf node of AAT to the bottom node (external 
branch node) of the sub-branch AT. The branch ATT, which is the reverse 
compliment AAT, along with the sub-branch of its suffix TT are added next. A 
pointer is established between the leaf nodes of the complimentary branches 
AAT and ATT. The prefix pointer (the pointer pointing to the external branch 
node to which the next leaf node will be added, or, from which the next leaf 
node will be visited) is moved to the external branch node of sub-branch AT. 
In (b), the leaf node A is added from the external branch node of sub-branch 
AT establishing the branch ATA. Similar to (a), its suffix TA and reverse com-
pliment TAT are added. The prefix pointer is moved to the sub-branch TA. In 
(c) leaf node T is visited as it is already in sub-branch TA, (incrementing the 
frequency counter of 3-mer TAT and its reverse compliment ATA), and the 
prefix pointer is moved to the sub-branch AT. In (d), similar to (c), the leaf 
node T is visited and the prefix pointer is moved to the sub-branch TT. In (e), 
leaf node A is added establishing the 3-mer, TTA, and its reverse compliment 
TAA. The prefix pointer is moved to the sub-branch TA. Like above, in (f), leaf 
node T is visited. In (g), leaf node A is visited and in (h) leaf node A is visited.

Algorithm 03: A Heuristic Algorithm for Large k-
mer Analysis
The third algorithm, called PGK-MER-COUNT , is designed 
to count k-mer frequencies for large values of k. It is a heuristic 
algorithm that works on the understanding that the desired 
k-mers are those that appear with high frequency in the ana-
lyzed DNA sequence. The expected frequency of a given k-mer 
(n=4k) decreases exponentially with the increase in k. As a re-
sult the frequency of a majority of k-mers of a sequence will 
be one or very small for large values of k. On the other hand, 
space required to store different k-mer counts increases expo-
nentially with the increase in k, reaching a maximum when 
k = n/2, with O(n2) representations. This is extremely large 
even for small genome sequences of around a million bases 
with much if not all of the k-mers having a frequency of one. 
An investigator is usually interested in not these low frequency 
k-mers but those k-mers that appear with relatively high fre-
quency in the analyzed sequence. The PGK-MER-COUNT   
algorithm can be used to obtain these k-mers very efficiently.

The PGK-MER-COUNT algorithm is described in detail 
in Methods but in brief the algorithm works as follows: The 
PGK-MER-COUNT   algorithm performs two scans of the in-
put sequence. The first scan performs the GK-MER-COUNT  
algorithm described above with a sub k-mer length, k0, that is 
much smaller than the required k-mer length k. The second 
scan uses the frequency counts of the sub k-mers computed 
in the first scan to heuristically extend the k-mer tree to ac-
commodate the frequency counts of the desired k-mers (of 
length k) that appear with a frequency greater than or equal to 
a given threshold value, in the scanned sequence. The value is 
the minimum desired k-mer frequency of interest.
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In its second scan, the PGK-MER-COUNT   algorithm ex-
tends the initial k-mer tree generated in the first scan (hav-
ing k-mer length k0) to accommodate the desired k-mers of 
length k. This is achieved by adding branch extensions to the 
complete branches of the initial k0-mer tree (or simply incre-
mentingthe k-mer count if the extended branch already ex-
ists). A branch extension is added if and only if the substring 
(of length k) representing the extended branch is encountered 
in the scanned sequence, s, with a minimum k0 on k substring 
abundance greater than or equal to the threshold . The mini-
mum k0 on k substring abundance of a length k substring in 
sequence s is define as the minimum frequency in the k0-
mer tree of the k−k0+ 1 substrings of length k0 in the length k 
string. This is a heuristic extension based on the rational that 
all k−k0+ 1 substrings of length k0< k of any substring of length 
k in sequence s with a frequency greater than or equal to the 
desired minimum frequency, , will havefrequencies greater 
than or equal to in s. Conversely, if any string of length k in 
sequence s contains a substring of length k0< k with a frequen-
cy less than α, then the string itself will have a frequency less 
than α. In other words the maximum frequency of a string of 
length k in sequence s is upper bounded by the minimum k0 
on k substring abundance of that string for some k0< k. Based 
on this observation, we only need to add branch extensions to 
the k0-mer tree if and only if the extension has a minimum k0 
on k substring abundance greater than or equal to the desired 
frequency.

Figure 5. Memory utilization of the P/GK-MER-COUNT  algorithms. Memory utilization of the (A) GK-MER-COUNT  algorithm for different values of k and 
(B) PGK-MER-COUNT   algorithm, with = 2, (k0; k) = (22; 120); (16; 120) and (16; 50), on the human, mouse and 50 archaea genome sequences listed in Sup-
plemental Table 01. (C) Comparative histogram of 50-mer and 10-mer frequency counts.

The minimum k0 on k substring abundance for all length k 
substrings in sequence s can be computed in linear time by 
traversing along the leaf nodes of the k0-mer tree using the 
suffix pointer. Hence the time complexity of the second scan is 
O(n + m(k−k0)) where m is the number of branch extensions 
added to the k0-mer tree and is bounded by 0 ≤m≤ (n−k + 1)/α 
. Generally, m will be small for large values of kand . The sub 
k-mer length k0 of the initial k0-mer tree plays an import part 
in the efficiency in building the subsequent k-mer tree. The 
larger the value k0, the more efficient will be the building of the 
subsequent k-mer tree. However, the sub k-mer length k0 is re-
stricted by the constraints underlying the GK-MER-COUNT  
algorithm. Ideally, , which is the desired minimum k-mer fre-
quency will be a value greater than the expected k0-mer fre-
quency, n/4k0. Depending on the available system resources, 
one can reduce subject to this constraint by increasing k0.

The amount of memory required for the PGK-MER-COUNT   
algorithm consists of the memory required for the first scan 
performed by the GK-MER-COUNT  algorithm which is lin-
ear and the additional memory required for the extensions 
added in the second scan which is also linear for large input 
sequences. The PGK-MER-COUNT   algorithm also has a lin-
ear worst case space utilization (see Figure 5 (B)).
The Modified PGK-MER-COUNT Algorithm

Performance and Evaluation

Time and space utilization

If sufficient memory is available to accommodate an initial sub 
k-mer length such that n/4k0 < α for α = 2, we can use a sim-
ple extension to the PGK-MER-COUNT  algorithm to output 
all k-mers (including those with frequency one) in very long 
input sequences for large values of k. This is made possible by 
observing that every sub-substring of length k in the input se-
quence with a minimum k0 on k substring abundance less than 
α = 2 has frequency one. Therefore, all length k sub-sequences 
encountered in the second scan of the PGK-MER-COUNT   
algorithm with a minimum k0 on k substring abundance of 
one can be directly sent to output (with a frequency count of 
one) without any additional cost. No record of it needs to be 
kept in memory. In practice, sub k-merlengths (k0) of 14 to 16 
can handle input sequences of 100 million to a billion bases 
in length.

The performance of the algorithms were evaluated using sev-
eral whole genome sequences. These include experiments on 
Human chromosomes (1, . . . , 22,X,Y), Mouse chromosomes 
(1, . . . , 19,X,Y), 681 bacteria genome sequences and 50 ar-
chaea genome sequences, downloaded from the Ensembl[8] 
and EMBL [9], nucleotide sequence databases. These evalua-
tions were performed to ascertain the space and time utiliza-
tion of the algorithms. The experiments were carried out on a 
Linux machine with a 1.0Ghz processor and 32Gb RAM.

In our first experiment we tested the GK-MER-COUNT  and 
PGK-MER-COUNT   algorithms on 50 archaea genome se-
quences to establish the level of performance of thesetwo algo-
rithms on time and space utilization. The 50 archaea genome 
sequences, listed in Supplemental Table 01, ranged in length 
between 5.7 and 0.3 million bases with an average length of 2.1 
million bases. In total they comprised of roughly 106:5 million 
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bases. As the algorithms simultaneously scan both the positive 
and negative strands of a given sequence, the actual sequence 
length scanned by them is double the input sequence length.

Figure 6. (A) shows the time taken by the GK-MER-COUNT  
algorithm to ascertain the k-merfre-quencies of the 50 archaea 
genome sequences as k varies from 5 to 50. It is evident that 
the algorithm performs fastest when k is small and increases 
linearly in time from around k = 15. There is a marked in-
creases in time between k = 10 and k = 15. This rapid increase 
in time expended can be attributed to the sharp increase in 
the number of leaf nodes generated by the algorithm between 
these two k-mer lengths as seen in Figure 6. (B). We can see 
from Figure 6. (B) that the number of leaf nodes generated by 
the GK-MER-COUNT  algorithm reaches an upper bound, 
which as explained above is determined by min(4k; n−k + 1). 
The linear increase in time, observed in Figure 6. (A), beyond 
k = 15, for computing the k-mer frequencies as k increases can 
be attributed to the linear increase in the number of branch 
nodes generated by the GK-MER-COUNT  algorithm as k in-
creases as seen in Figure 6. (C). As a testimony to the speed 
of the GK-MER-COUNT  algorithm, we see from Figure 6. 
(A) that it can compute the 50-mer frequencies of 50 archaea 
whole genomes in less than an hour. It should be stated that a 
bulk of this time is spent on writing results to external storage.

Figure 6. Performance of the GK-MER-COUNT  algorithm. Performance of the GK-MER-COUNT  algorithm on the 50 archaea genome sequences listed in 
Supplemental Table 01.

Figure 7. Performance of the PGK-MER-COUNT   algorithm. Performance of the PGK-MER-COUNT   algorithm, with = 2, on the 50 archaea genome sequences 
listed in Supplemental Table 01.

Figure 7. (A) shows the running time of the PGK-MER-
COUNT   algorithm for computing the k-mer frequencies 
of the 50 archaea genome sequences described above, with a 
minimum desired k-mer frequency of 2. The algorithm was 

run with a sub k-mer length of 12. The running time of the 
PGK-MER-COUNT   algorithm decreases exponentially with 
the increase in k. This is because the algorithm in generating 
Figure 7. (A) is only concerned with k-mers with frequencies 
greater than or equal to two eliminating the need to keep track 
of a vast number of k-mers having frequency one. This can be 
seen by looking at Figures 7. (B) and (C) which shows an expo-
nential drop in the number of leaf and branch nodes generated 
by the PGK-MER-COUNT   algorithm as k increase. Figure 
5. (C) shows the difference in frequency counts between the 
10-mer and 50-mer frequencies of the 50 archaea genome 
sequences described above. It can be seen that a substantial 
number of 50-mers have frequency one with the counts drop-
ping rapidly with increasing frequency. The 10-mers on the 
other hand show a more uniform decrease in counts between 
adjacent frequencies with smaller differences between them. 
By avoiding low frequency counts, the PGK-MER-COUNT   
algorithm is able to make substantial savings in both time and 
space utilization. This savings increase exponentially with the 
increase in k-mer length. 

Between genome composition analysis
An interesting biological exercise with a verity of ap-plications 
is the identification of genomes (from an array of bacteria 
genomes for example) having sub-sequences of a particular 
length that appear in low abundance in another genome (such 
as that of a newly sequenced species for example). Given a 
genome and a sub-sequence length of interest, being able to 
quickly and efficiently identify other genomes that have a low 
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Identifying longest duplicated segments

abundance of hits for sub-sequences from the first genome is a 
challenging but important problem in computational biology. 
To demonstrate the utility of the GK-MER-COUNT  and PGK-
MER-COUNT   algorithms, we used them to gather statistics 
of the abundance of common 25-mers in the mouse chromo-
somes and 681 bacteria sequences. These results are shown in 
Supplemental Table 02. We used the PGK-MER-COUNT   al-
gorithm to obtain all 25-mers in the mouse chromosomes with 
a frequency of 2 or greater. We used the GK-MER-COUNT  
algorithm to obtain all 25-mers of the 681 bacteria sequences.

From this analysis we see that the mouse chromosome with 
the highest number of bacteria sequences that did not have 
any 25-mer that appeared at least twice was chromosome Y 
(528 bacteria sequences) and the lowest was chromosome 1 
(340 bacteria sequences). There were 256 bacteria sequences 
without a single 25-mer that appeared at least twice in any 
of the mouse chromosomes. The largest of these was the soil 
bacterium ‘SolibacterusitatusEllin 6076’ with a chromosome 
length of 10.0 Mbp. There were 152 bacteria sequences that 
had at least one 25-mer that appeared at least twice in every 
mouse chromosome.
 
The largest of this was the bacterium ‘Streptomyces avermitilis 
MA-4680’ with a chromosome of 9.0 Mbp and the smallest 
was the bacterium ‘Candidatus Sulcia muelleri GWSS’ with 
a chromosome length of 0.25 Mbp. There were 425 bacteria 
sequences that had at least one 25-mer that appeared at least 
twice in at least one of the mouse chromosomes. The bacte-
rium ‘Mycoplasma hyopneumoniae 7448’ with a chromosome 
length of 0.92 Mbp had the highest number of unique 25-mers 
(3173) with at least two hits in a mouse chromosome.

The PGK-MER-COUNT   algorithm can find k-mer counts for 
very large values of k in very long input sequences. In order to 
validate this assertion, we used the PGK-MER-COUNT   al-
gorithm to find the longest duplicated sequence in each of the 
human chromosomes. In order to avoid interspersed repeats 
and low complexity DNA sequences, we used the masked 
version of the genome sequence of the human chromosomes 
obtained from Ensembl. The identified repeated segments for 
each chromosome are listed in Supplemental Table 03. The 
longest duplicated sub-string of an input sequence is given 
by the PGK-MER-COUNT   algorithm when the input k-mer 
length k is such that it is the largest value for which a hit is not-
ed when the algorithm is run with set to 2. This value of k can 
be easily found by iteratively running the PGK-MER-COUNT   
algorithm with different values of k until the value of k is found 
for which there is a hit but not for k+1.

From Supplemental Table 03.we see that human chromosome 
11 has the longest duplicated sequence extending 5829 bases 
in spite of it being only the 12th largest in size. On the other 
hand, the longest duplicated sequence in chromosome 21 is 
569 bases. It is interesting to note that after chromosome 11, it 
is the two sex chromosomes, chromosomes Y and X that have 
the longest duplicated sequence extending 5681 and 4720 bas-
es respectively. Chromosome X is the most conserved human 

chromosome [10]. Chromosome 8 has two longest duplicated 
sequences of 3443 bases each. While the longest duplicated 
sequence of chromosomes 15 and 16 are in fact triplicates ex-
tending 3914 and 2777 bases respectively, the longest dupli-
cated sequence of chromosome 13 is a quintuplicate extending 
1261 bases.

Discussion

Methods

The GK-MER-COUNT  and PGK-MER-COUNT   algorithms 
are efficient algorithms for counting k-merfre-quencies of 
whole genome sequences. As they work with system memory 
in spite of the large amount of data they need to handle, they 
are very fast and convenient to use. They come at a time when 
an in-creasing number of newly sequenced genomic data are 
being added to the existing array of whole genome sequences 
creating a big demand for efficient tools to perform task of this 
nature.

Although the GK-MER-COUNT  algorithm works with mod-
erate length k-mers, it falls within the range of many of the 
k-mers of biological interest such as transcription factor bind-
ing sites, restriction sites, etc. The PGK-MER-COUNT   algo-
rithm on the other hand can gather k-mer statistics for large 
values of k from tens to thousands of bases in length serving 
the need of many applications that require k-merfrequency 
counts. Although the PGK-MER-COUNT   algorithm is de-
signed to gather high frequency k-mer counts for large k in 
long genomic sequences, with sufficient memory it can be 
used in its modified form to gather k-mer counts of all k-mers.

The k-mer-Count algorithm is the fastest amongst the three al-
gorithms described above for small values of k. The GK-MER-
COUNT  algorithm is faster than the PGK-MER-COUNT   
algorithm for computing all frequency counts for moderate 
values of k. The modified PGK-MER-COUNT   algorithm 
can sometimes outperform the GK-MER-COUNT  algorithm 
for computing all frequency counts for moderate values of k, 
however its output is not ordered unlike that of the GK-MER-
COUNT  algorithm. The modified PGK-MER-COUNT   algo-
rithm on the other hand can compute all the frequency counts 
for large values of k. A majority of time expended by these 
algorithms is spent on writing output to external storage.

The k-mer-Count Algorithm
The k-mer-Count algorithm takes as input, a DNA sequence 
file f, the k-mer length k, and returns an array, M , of length 
4k, with the frequencies of all 4k different patterns of length k 
in the DNA sequence and its reverse compliment. The algo-
rithm uses the function getchar to read a character from f. The 
function convert, used in the algorithm, takes a nucleotide and 
returns its corresponding radix-4 digit. The function compli-
ment returns the compliment of a converted nucleotide. Also 
used in the algorithm are the two functions div and mod that 
return the quotient and remainder of a division operation re-
spectively. Arrays in the algorithm are one-based arrays.
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K-MER-COUNT(f, k)

1    h ← 4k-1

2    Iw ← 0
3    Ic ← 0
4    for i← 1 to k
5 c ← getchar(f)
6 Iw ← Iw+ convert(c) × 4k-i

7 Ic ← Ic+ compliment( convert(c) ) × 4i-1

8    M [Iw+ 1] ← M [Iw+ 1] + 1
9    M [Ic+ 1] ← M [Ic+ 1] + 1
10   while ( c←getchar(f) ) ≠eof
11 Iw ← ( (Iw mod h ) × 4 ) + convert(c)
12 Ic ← (Ic div 4 ) + compliment( convert(c) ) × h
13 M [Iw+ 1] ← M [Iw+ 1] + 1
14 M [Ic+ 1] ← M [Ic+ 1] + 1
15    return M

The k-mer-Count algorithm works as follows. Lines 2-9 com-
putes the indices of the first length k sub-string and its reverse 
complement of the input sequence. Line 6 computes the sub-
string index along the forward strand while line 7 computes 
the index of its reverse complement. This initialization is 
achieved in O(k) time. Lines 8 and 9 update the corresponding 
counts of the initial k-mer and its reverse compliment respec-
tively. Lines 10-14 iteratively compute the indices of succes-
sive k-mers and their reverse complements and update their 
counts accordingly. The algorithm achieves a linear time per-
formance by computing, in lines 11 and 12 respectively, the 
indices of every successive length k sub-string and its reverse 
complement in constant time. In order to compute the index 
of a sub-string in constant time the algorithm uses the fact that 
every successive sub-string has as its k − 1 higher order dig-
its the k − 1 lover order digits of its immediate predecessor. 
Therefore, instead of computing the value of the index of the 
sub-string from its k digits, line 11 simply shifts by one posi-
tion to the left the k − 1 lower order digits of its immediate 
predecessor (which is achieved in constant time by taking the 
predecessor index value modulo 4k-1 multiplied by 4) and adds 
the new digit as a lowest order digit to give the value of the cur-
rent sub-string index. This is graphically illustrated in Figure 
1. (c). A similar argument follows in computing the index of 
the reverse complement. In computing the index of the reverse 
compliment, line 12 simply shifts by one position to the right 
the k − 1 higher order digits of the reverse complement of the 
immediate predecessor (which is achieved in constant time by 
taking the quotient of the division of the value of the predeces-
sor reverse compliment index by 4) and adds the new digit as 
a highest order digit (by multiplying it by 4k-1) to give the value 
of the index of the reverse compliment (see Figure 1.(b) and 
(c)).

In the discussions that follow, we refer to nucleotide characters 
converted to their radix-4 digit simply as characters instead of 
explicitly mentioning that they are the numerical representation 
of the nucleotides.

The GK-mer-Count  Algorithm
The GK-MER-COUNT  algorithm takes as input a sequence 
file, f, of DNA sequence, s, the length k of the k-mer of inter-
est, and builds a k-mer tree embodying the frequency counts 
of all k-mers (and their reverse compliments) in s. The algo-
rithm uses a circular buffer, Gbuffer, of length k to keep track 
of successive k-mers along the input sequence. The GK-MER-
COUNT  algorithm uses the function getchar to read a char-
acter from file f. It also uses the functions convert to convert 
a nucleotide to its corresponding radix-4 digit, ( A→ 0; C →1; 
G → 2; T → 3 ), and compliment to get the compliment of a 
converted nucleotide, ( 0 → 3; 1 → 2; 2 → 1; 3 → 0 ). Also used in 
the algorithm are the two functions div and mod that returns 
the quotient and remainder of a division operation respective-
ly. An internal-branch-node is an array of pointers pointing 
to other branch nodes. An external-branch-node is an array 
ofpointers pointing to leaf nodes. Arrays in the algorithm are 
zero-based arrays.
GK-MER-COUNT (f; k)
1    for i← 0 to k− 1
2 c ← getchar(f)
3 Gbuffer[i] ← convert(c)
4    root ← new internal-branch-node[ 4 ]
5    origin ← 0
6    prefix ← INSERT-LEAF ( INSERT-BRANCH( origin ) )
7    while not eof(f) do
8 c ← getchar(f)
9 ADD2COUNT( convert(c) )

The GK-MER-COUNT  algorithm works as follows. Lines 1-3 
of the algorithm populate the buffer, Gbuffer, with the first k 
characters of the input sequence. Line 4 creates the first inter-
nal-branch-node at depth 0 and establishes the pointer root as 
its handle. Line 5 sets the variable origin to 0 to indicate the 
current location of the k-mer in the circular buffer, Gbuffer. 
In line 6, the algorithm uses the two functions Insert-Branch 
and Insert-Leaf to add the initial k-mer to the k-mer tree. The 
return value from the function Insert-Leaf which is a pointer 
to the external branch node of the suffix sub-branch of the k-
mer, is assigned to the pointer variable, prefix. Lines 7-9 read 
successive characters from the input sequence until the end of 
file is reached and adds the resulting k-mers to the k-mer tree 
via the function ADD2COUNT.
INSERT-BRANCH(p)
1    x ← root
2    for i← 1 to k− 2
3 r ← Gbuffer[ p ]
4 if x[r] = NIL then
5 x[r] ← new internal-branch-node[ 4 ]
6 x ← x[ r ]
7 p ← (p + 1) mod k
8    r ← Gbuffer[ p ]
9    if x[r] = NIL then
10 x[ r ] ← new external-branch-node[ 4 ]
11    x ← x[ r ]
12    return x
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The function INSERT- BRANCH takes the index of the start of 
the current k-mer on Gbuffer and adds the sub-branch repre-
senting that k-mer to the k-mer tree. It returns a pointer to the 
external-branch-node of the sub-branch. The algorithm starts 
from the first internal branch node at depth 0 by settingthe 
incremental pointer variable x to root. Lines 2-7 add the re-
maining (k - 2) internal branch nodes to the tree if they do not 
exist. Line 3 reads the character indexed by the variable p on 
Gbuffer. Line 4 checks to see whether an internal branch node 
is already present for this character. If it is a new sequence (i.e. 
there is no internal branch node extending from this charac-
ter) an internal branch node is added for the character in line 
5. In line 6, the incremental pointer x is advanced to the next 
internal branch node indexed by r. In line 7, the index p is in-
cremented to the next character of the k-mer on Gbuffer. Lines 
9-10 add the external branch node of the sub-branch of the k-
mer. Line 9 checks to see whether this node already exists and 
line 10 adds it if it does not. In line 11, the pointer variable x is 
moved to point to the external branch node of the k-mer sub-
branch and line 12 returns this pointer to the calling routine.
INSERT-REVERSE-COMPLIMENT-BRANCH(p)
1    x ← root
2    for i← 1 to k− 2
3 r ← compliment(Gbuffer[ p ] )
4 if x[r] = NIL then
5     x[r] ← new internal-branch-node[ 4 ]
6 x ← x[ r ]
7 p ← (p − 1) mod k
8    r ← compliment(Gbuffer[ p ] )
9    if x[r] = NIL then
10 x[ r ] ← new external-branch-node[ 4 ]
11    x ← x[ r ]
12    return x
The function INSERT-REVERSE-COMPLIMENT-BRANCH 
is similar to the function Insert-Branch except that it adds the 
reverse compliment sub-branch of the k-mer in Gbuffer to the 
k-mer tree.

INSERT-LEAF(x)
1 p ← (origin + k − 1) mod k
2 r ← Gbuffer[p]
3 x[r] ← new leaf-node
4 x[r] → extension ← NIL      ▷ Used in PGK-MER-
COUNT  
5 x[r] → count ← 1
6 x[r] → suffix ←INSERT-BRANCH( (origin + 1) mod k )
7 x[r] → rcomp ← INSERT-COMPLIMENT-LEAF(INSERT-
REVERSE-COMPLIMENT-BRANCH((origin−1) mod k) )
8 (x[r] → rcomp ) → rcomp ← x[r]
9 return x[r] → suffix
The function INSERT-LEAF takes a pointer to the external 
branch node of the k-mer sub-branch of the k-mer in Gbuffer 
and adds its leaf node (to complete the branch). In line 1, the 
index p is set to point to the last character of the k-mer in 
Gbuffer. The implicit index representing this character giv-
ing the location on the external branch node is read in Line 2. 
Line 3 adds the new leaf node. Line 4 initializes the extension 
pointer of the leaf node. Line 5 sets the variable count of the 
leaf node to 1. Line 6 calls the function INSERT-BRANCH to 

add the k+1 prefix of the k-mer to the k-mer tree and sets the 
suffix pointer of the leaf node to its return value establishing 
a pointer link between the leaf node and the external branch 
node of the prefix sub-branch of the k-mer. Line 7 uses the 
functions INSERT-REVERSE-COMPLIMENT-BRANCH and 
INSERT-COMPLIMENT-LEAF to add the reverse compliment 
of the k-mer to the k-mer tree. The return value of the func-
tion INSERT-COMPLIMENT-LEAF is assigned to the pointer 
variable rcomp establishing a pointer link between the leaf 
node of the k-mer and its reverse compliment leaf node. Line 8 
uses the newly establishedrcomppointer to access the reverse 
compliment leaf node toset its rcomp pointer to point to the 
current leaf node. Line 9 returns the pointer to the external 
branchnode of the suffix sub-branch of the k-mer, to the call-
ing function.
INSERT-COMPLIMENT-LEAF(x)
1    p ← origin
2    r ← compliment(Gbuffer[p] )
3    x[r] ← new leaf-node
4    x[r] → extension ← NIL      ▷ Used in PGK-MER-COUNT  
5    x[r] → count ← 1
6    x[r] → suffix ← INSERT-REVERSE-COMPLIMENT-
BRANCH( (origin − 2) mod k )
7    return x[r]
The function INSERT-COMPLIMENT-LEAF is similar to the 
function Insert-Leaf except that it does not have the two cor-
responding lines 7 and 8 of function INSERT-LEAF.

ADD2COUNT(v)
1    origin ← (origin + 1) mod k
2    Gbuffer[ (origin + k − 1) mod k ] ← v
3    if prefix [v] ≠ NIL then
4 prefix [v] → count + +
5 (prefix [v] →rcomp )→count + +
6 prefix ← prefix [v] → suffix
7    else
8 prefix ← INSERT-LEAF ( prefix  )
The function ADD2COUNT acts as the main function that 
adds k-mers to the k-mer tree as new characters are read from 
the input sequence. In line 1, the function ADD2COUNT sets 
the variable origin to the index of the new k-mer in Gbuffer. In 
line 2, the character read from the input sequence is added to 
Gbuffer. Line 3 checks to see if there is a leaf node representing 
the read character extending from the external branch node 
pointed to by the prefix pointer (i.e. if the k-mer is already in 
the k-mer tree). Ifthe leaf node does exist, line 4 increments 
by one the variable counter which holds the frequency of the 
k-mer. Line 5 uses the rcomp pointer to access the reverse com-
pliment of the k-mer and increment itscounter by one. Line 
6 moves the prefix pointer to the external branch node of the 
suffix sub-branch of the k-mer which is given by the suffix 
pointer in the leaf node. If the leaf node does not exist, line 8 
adds it to the k-mer tree.

The PGK-MER-COUNT   Algorithm
The PGK-MER-COUNT   algorithm takes as input a sequence 
file, f, of a DNA sequence, s, the sub k-mer length, k0, and k-
mer length, k, where 1 < k0< k− 1, and, the minimum desired 
k-mer frequency of interest, , and builds a k-mer tree embody-
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ing the frequency counts of all k-mers (and their reverse com-
pliments) in s with a minimum k0 on k substring abundance 
greater than or equal to α. The algorithm uses a circular buffer, 
PGbuffer, of length k.
The PGK-MER-COUNT   algorithm takes as input a sequence 
file, f, of a DNA sequence, s, the sub k-mer length, k0, and k-
mer length, k, where 1 < k0< k− 1, and, the minimum desired 
k-mer frequency of interest, , and builds a k-mer tree embody-
ing the frequency counts of all k-mers (and their reverse com-
pliments) in s with a minimum k0 on k substring abundance 
greater than or equal to α. The algorithm uses a circular buffer, 
PGbuffer, of length k.

The PGK-MER-COUNT   algorithm uses the following global 
variables

q ▷PGbuffer index(position to insert next character 
read from file)
a ▷PGbuffer index
b ▷PGbuffer index

n ▷ counter of consecutive number of sub k-mers with 
sub-string abun-dance greater than or equal to α.
w ▷  constant number of substrings of length k0 in string 
of length k
m ▷  pointer to a leaf-node
e ▷  pointer to the leaf-node for extension

PGK-MER-COUNT  (f; k0; k; α )
1 for i← 0 to k0− 1
2 c ← getchar(f)
3 Gbuffer[i] ← convert(c)
4 root ← new internal-branch-node[ 4 ]
5 origin ← 0
6 prefix ← INSERT-LEAF ( INSERT-BRANCH(( origin 
) )
7 while not eof(f) do
8 c ← getchar(f)
9 ADD2COUNT( convert(c) )
10 move file pointer to beginning of file (f)
11 for i← 0 to k− 1
12 c ← getchar(f)
13 PGbuffer[i] ← convert(c)
14 w ← k − k0+ 1
15 a ← k0 − 1
16 b ← 0
17 q ← k − 1
18 l ← root
19 while b < (k0− 1) do
20 l ← l[PGbuffer[b]]
21 b + +
22 m ← l[PGbuffer[b]]
23 e ← m
24 n ← 0
25 PG-Do()
26 while not eof(f) do
27 c ← getchar(f)
28 PG-ADD2COUNT( convert(c) )

The PGK-MER-COUNT   algorithm performs two scans of 
the input sequence. The first scan given in lines 1-9 imple-
ments the GK-MER-COUNT  algorithm described above 
with a sub k-mer length k0 to generate a k0-mer tree. This k0-
mer tree is built upon by the second scan of the algorithm by 
adding branch extensions for k-mers with a minimum k0 on 
k substring abundance greater than or equal to α found in the 
input sequence. Line 10 resets the file pointer to the begin-
ning of the input file. Lines 11-13 populates the circular buffer, 
PGbuffer, with the first k characters of the input sequence. In 
line 14, the constant w is assigned the length of the branch 
extension. In line 15, the index variable a is set to the index of 
the last character of the first k0-mer of the k-mer in PGbuffer. 
In line 16, the index variable b is set to the first character of 
the k-mer in PGbuffer and in line 17, the index variable q is 
set to thelast character of the k-mer in PGbuffer. In line 18, 
the incremental pointer l is set to point to the first internal 
branch node of thek0-mer tree. Lines 19-21 move the incre-
mental pointer l down the tree fromthe first internal branch 
node to the external branch node of the first k0-mer of the 
k-mer in PGbuffer by traversing PGbuffer using the index vari-
able b. In line 22, the pointer variable m is set to point to the 
leaf node of the k0-mer. In line 23, the pointer variable e is also 
set to point to the leaf node of the k0-mer. The pointer variable 
e is used to access the leaf node of the k0-mer when a branch 
extension is added. In line 24, the counter variable n is set to 
zero. The variable n is used to count the number of k0-mers in 
the k-mer with a frequency greater than . Line 25 calles the 
function PG-Do which decides whether a branch extension 
should be added to the k0-mer tree. Lines 26-28 read succes-
sive characters from the input sequence until the end of file 
is reached and adds the resulting k-mers to the k0-mer tree if 
their minimum k0 on k substring abundance is greater than or 
equal to α, via the function PG-ADD2COUNT.

PG-Do()
1 if m→count≥ α then
2 n + +
3 while m→count≥ α and n < w do
4 b ← (b + 1) mod k
5 m ← m → suffix [PGbuffer[b]]
6 if m→count≥  then
7 n + +
8 if n = w then
9 PG-ADD-EXTENSION()

The purpose of the function PG-Do is to add a branch exten-
sion to the k0-mer tree to represent the k-mer in PGbuffer if its 
minimum k0 on k substring abundance is greater than or equal 
to α. At the beginning the pointer variable m points the leaf 
node of the first k0-mer of the k-mer. Line 1 of function PG-Do 
checks to see whether this k0-mer has a frequency greater than 
or equal to α. If it does, line 2 increments the counter vari-
able n by one. Lines 3-7 scan the k-mer until a k0-mer with a 
frequency less than α is encountered or until all k0-mers of the 
k-mer are accounted for. Line 4 increments the index variable 
b which keeps track of the last character of the k0-mer. Line 5 
uses the suffix pointer of the leaf node of the current k0-mer 
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and the index to the leaf node of the next k0-mer to move the 
pointervariable m to the leaf node of the next k0-mer. Line 6 
checks to see if the new k0-mer has a frequency greater than or 
equal to α and if it does line 7 increments the counter variable 
n. The condition n = w in line 8 is satisfied if and only if the 
k-mer has a minimum k0 on k substring abundance greater 
than orequal to α. Line 9 calls the function PG-Add-Extension 
to add a branch extension to the k0-mer tree to represent the 
k-mer if the condition in line 8 is satisfied.
PG-ADD-EXTENSION()
1 if e→extension = NIL then
2 e → extension ← new internal-branch-node[ 4 ] 
3 x ← e → extension
4 p ← (a + 1) mod k
5 for i← 2 to k−k0− 1
6 r ← PGbuffer[p]]
7 if x[r] = NIL then
8 x[r] ← new internal-branch-node[ 4 ]
9 x ← x[r]
10 p ← (p + 1) mod k
11 r ← PGbuffer[p]]
12 if x[r] = NIL then
13 x[r] ← new external-branch-node[ 4 ]
14 x ← x[r]
15 p ← (p + 1) mod k
16 r ← PGbuffer[p]]
17 if x[r] = NIL then
18 x[r] ← new leaf-node
19 x[r] → extension ← NIL
20 x[r] → count ← 0
21 x[r] → suffix ← NIL
22 x[r] → rcomp ← PG-ADD-EXTENSION-REVERSE-
COMPLIMENT()
23 (x[r] →rcomp ) →rcomp←x[r]
24 x[r] → count + +
25 (x[r] →rcomp ) →count + +

The function PG-ADD-EXTENSION adds a branch extension 
to the k0-mer tree for a new k-mer or increments the frequen-
cy count of a k-mer already having a branch extension in the 
k0-mer tree. The branch extension is added at the leaf node of 
the first k0-mer of the k-mer. Access to this leaf node isgained 
by the pointer variable e. In line 1, the function checks to see 
whether there is a branch extension from the leaf node. If the 
leaf node has no branch extension, line 2 adds the first inter-
nal branch node of the extension. In line 3, the incremental 
pointer variable x is pointed to the first internal branch node 
of the extended branch node of the k-mer. The index variable 
a holds the index of the last character of the first k0-mer of the 
k-mer on PGbuffer. In line 4, the index variable p is assigned 
the next index from a which is the index of the first character 
of the k-mer in its branch extension. Lines 5-10 add new inter-
nal branch nodes to the extending branch if they do not exist. 
Line 6 gets the next character from PGbuffer. Line 7 checks to 
see if an internal branch node already exists for this character. 
Line 8 adds anew internal branch node to the growing branch 
if one does not already exist. Line 9 moves the pointer vari-
able x to the node pointed to by the character indexed by r in 
the internal branch node. Line 10 moves the index variable p 

to the next character on PGbuffer. Line 11 gets the character 
pointed to by the index variable p. Line 12 checks to see if an 
external branch node already exists for this character. If one 
does not exist, line 13 adds a new external branch node. Line 
14 moves the pointer variable x to the external branch node 
pointed to by index r of the internal branch node. Line 15 
moves the index variable p to the next character on PGbuffer 
which must be the last character of the k-mer. Line 16 getsthis 
character from PGbuffer. Line 17 checks to see if a leaf node 
exists in the extended branch for the character. If one does 
not exist lines 18-23 add a leaf node and sets its variables to 
their initial values. Line 24 increments the frequency count of 
the k-mer and line 25 increments the frequency count of its 
reverse compliment.

PG-ADD-EXTENSION-REVERSE-COMPLIMEN()
1 x ← root
2 p ← (a + k − k0) mod k
3 for i← 1 to k0− 1
4 r ← compliment(PGbuffer[p])
5 x ← x[r]
6 p ← (p − 1) mod k
7 r ← compliment(PGbuffer[p])
8 if x[r] →extension = NIL then
9 x[r] → extension ← new internal-branch-node[ 4 ]
10 x ← x[r] → extension
11 p ← (p − 1) mod k
12 for i← 2 to k−k0− 1
13 r ← compliment(PGbuffer[p])
14 if x[r] = NIL then
15 x[r] ← new internal-branch-node[ 4 ]
16 x ← x[r]
17 p ← (p − 1) mod k
18 r ← compliment(PGbuffer[p])
19 if x[r] = NIL then
20 x[r] ← new external-branch-node[ 4 ]
21 x ← x[r]
22 p ← (p − 1) mod k
23 r ← compliment(PGbuffer[p])
24 if x[r] = NIL then
25 x[r] ← new leaf-node
26 x[r] → extension ← NIL
27 x[r] → count ← 0
28 x[r] → suffix ← NIL
29 x[r] → rcomp ← NIL
30 return x[r]
The function PG-Add-Extension-Reverse-Compliment adds 
the reverse compliment of a k-mer extension to the k0-mer 
tree. It is similar to the function PG-Add-Extension, however 
it needs to trace down the k0-mer tree using the first k0 charac-
ters of the reverse compliment to locate the correct leaf node 
to add the reverse compliment extension. This process is car-
ried out in lines 1-6. The function returns a pointer to the leaf 
node of the extension.

PG-ADD2COUNT(v)
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1 q ← (q + 1) mod k
2 PGbuffer[q] ← v
3 if n = w then
4 a ← (a + 1) mod k
5 e ← e → suffix [PGbuffer[a]]
6 b ← (b + 1) mod k
7 m ← m → suffix [PGbuffer[b]]
8 n − −
9 PG-Do()
10 else if a = b then
11 a ← (a + 1) mod k
12 e ← e → suffix [PGbuffer[a]]
13 b ← (b + 1) mod k
14 m ← m → suffix [PGbuffer[b]]
15 PG-Do()
16 else
17 a ← (a + 1) mod k
18 e ← e → suffix [PGbuffer[a]]
19 n − −

The function PG-ADD2COUNT is the main function that 
adds branch extensions to the k0-mer tree for qualifying k-
mers (i.e. k-mers with a minimum k0 on k substring abundance 
greater than or equal to α) as new characters are read from the 
input sequence. Line 1 of PG-ADD2COUNT moves the in-
dex variable q by one to the point on PGbuffer where the new 
character, v, is inserted. Line 2 adds this character to PGbuffer. 
In line 3, the algorithm checks to see if the most recent k-mer 
was a qualifying k-mer. If this is the case, the algorithm only 
needs to check if the last k0-mer of the current k-mer has a fre-
quency greater than or equal to α to be a qualifying k-mer. A 
qualifying k-mer has w k0-mers with frequency greater than or 
equal to α . The number of k0-mers in a k-mer with a frequency 
greater than or equal to α is recorded in the variable n. When 
the index variables a and b are equal fulfilling the condition 
in line 10, it implies that n = 0 or that counting frequencies 
of k0-mers in the k-mer must be done from the first k0-mer, 
otherwise, when a≠b the algorithm executes lines 17-19 which 
in effect discards the next n(< w) k-mers which are guaranteed 
to have a minimum k0 on k substring abundance less than α.

5) Choi JH, G CH (2002) Analysis of common k-mers for 
whole genome sequences using SSB-tree. Genome Inform 13: 
30–41. 
6) Marais G, Kingsford C (2011) A fast, lock-free approach for 
efficient parallel counting of occurrences of k-mers. Bioinfor-
matics 27(6): 764–770.
7) Karp RM, Rabin MO (1987) Efficient randomized pattern-
matching algorithms. IBM J Res Dev 31(2): 249–260. 
8) Hubbard TJP, Aken BL, Beal K, Ballester B, Caccamo M, et 
al. (2007) Ensembl 2007. Nucleic Acids Res (Database issue) 
35: 610–617. 
9) Stoesser G, Baker W, van den Broek AE, Camon E, Hingamp 
P, et al. (2000) The EMBL Nucleotide Sequence Database. Nu-
cleic Acids Res 28: 19–23. 
10) Khil PP, Camerini-Otero RD (2005) Molecular Features 
and Functional Constraints in the Evolu-tion of the Mamma-
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