
 JScholar Publishers

Optimum-time, Optimum-space, Algorithms for k-mer Analysis of Whole
Genome Sequences
Sumedha S. Gunewardena

Department of Molecular and Integrative Physiology, Department of Biostatistics,
University of Kansas Medical Center, Kansas City, Kansas, USA

Research Open Access

Journal of
Bioinformatics and Comparative Genomics

Received Date: November 21, 2013 Accepted Date: January 25, 2014 Published Date: January 30, 2014

Citation: Sumedha S. Gunewardena (2014) Optimum-time, Optimum-space, Algorithms for k-mer Analysis of
Whole Genome Sequences. J Bioinfo Comp Genom 1: 1-12.

*Corresponding author: Sumedha S. Gunewardena, Department of Molecular and Integrative Physiology, Depart-
ment of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas, USA; E-mail: sgunewardena@
kumc.edu

Abstract

The sizable amount of data generated by high throughput cell biology is increasing the demand on traditional computational
tools in bioinformatics to handle large input datasets. Large sequence data sets create intractable search spaces that are be-
yond the scope of many conventional algorithms. One way to address this problem is to transform large sequence data sets to
the constituent parts that characterize the features of interest (e.g. transcription factor binding sites, miRNA sites, etc.) of the
problem. These features of interest take the form of k-mers in a large subset of problems in computational biology. K-mers
also play an implicit role in many other bioinformatics functions from microarray probes to genomic compositional analy-
sis.Given the increasing potential for k-mers in a wide spectrum of applications in bioinformatics we present in this paper a
set of fast and efficient generic algorithms for enumerating the occurrence frequen-cies of all substrings of a given length (k-
mers) in whole genome sequences. Described are three algorithms of increasing complexity designed to deal with different
k-mer lengths from short (couple of bases) to very long (tens of thousands of bases). They are memory based algorithms that
use advanced heuristics to efficiently process large amounts of data that arise when analyzing very long genome sequences.
The algorithms were tested for performance on the human, mouse, 681 bacteria and 50 archaea genome sequences. Results
are described for both time and space utilization. We also describe several different experiments that demonstrate the utility
of these algorithms. These algorithms can be downloaded from http://www2.kumc.edu/siddrc/bioinformatics/publication.
html.

©2013 The Authors. Published by the JScholar under the terms of the Crea-
tive Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and
source are credited.

 J Bioinfo Comp Genom 2014 | Vol 1: 101

Introduction
K-mers play an implicit but very important role in many appli-
cations in computational biology as they form the character-
izing unit of many interesting DNA sequences. For example,
a transcription factor can be represented as a subset of 8-mers
or 10-mers or some other k-mer, microarray probes can be
defined as a collection of 25-mers, or some other suitable k-
mer of choice, etc. It makes analysis of these sequence features
very fast and very efficient if we can breakdown very long se-
quences (from for example Chip-sequence data or whole ge-
nome sequences) into their representative k-mers of interest.
While on one hand this provides a lot of information on the
relative abundance of different k-mers (useful for example in

tasks such as generating microarray probes), it also enables
us to drastically reduce the search space for applications such
as motif detection (especially important when scanning for
motifs in hundreds of sequences with lengths over thousands
of bases). The problem is not trivial when relatively large k-
mers in long DNA sequences are sought. The algorithms that
we present in this paper are generic and can easily assist with
or incorporate to any one of the many applications that uti-
lize k-mers in their analysis.With the advent of large-scale ge-
nome sequencing projects (over 4600 completed or ongoing
genome sequencing projects worldwide, [1]), there has being
an exponential growth in the number of whole genome se-
quence data added to the literature (over 900 fully sequenced
genomes to date, [1]). With this growth comes an increasing
demand for efficient computational tools for analyzing this
data. Counting the number of unique k-mers in a sequence is
one such tool widely used in genomic analysis. k-mer analy-
sis has wide ranging applications varying from whole genome

https://www.jscholaronline.org/
https://www.jscholaronline.org/journals/journal-of-cardiology-and-vascular-medicine/jhome.php
https://www.jscholaronline.org/journals/journal-of-cardiology-and-vascular-medicine/jhome.php

2

 JScholar Publishers

 J Bioinfo Comp Genom 2014 | Vol 1:101

compositional analysis to comparative genomics. Many nucle-
otide sequences of interest such as transcription factor bind-
ing sites, ribosome binding sites, microRNA sites, restriction
sites, splice sites, primer sequences, probe sequences, etc. can
be characterized by k-mers.

A k-mer is a string of length k over an alphabet Σ, where Σ is
the four nucleotide bases {A; C; G; T}, for DNA sequences. In
traditional k-mer analysis, k varies between 1 and 12. How-
ever, we are interested in unrestricted values of k making the
problem much more computationally challenging in the man-
agement of both time and space (memory). k-mer analysis
involves computing the frequencies of all distinct sub-strings
of length k appearing in an analyzed sequence. While k-mer
analysis using system memory forsmall values of k on short
sequences of several thousand bases can be accomplished with
relative ease (see [2], where the authors describe a tool AS-
SIRC which uses hashing functions to find fixed sized regions
of similarity which are then extended by a random walk pro-
cedure), the problem becomes challenging when long k-mers
on whole genome sequences with lengths over a million bases
in a single chromosome accumulating to over a billion bases
in total are considered. Existing algorithms deal with longer
k-mers by using external memory (see [3], which describes
the tool REPuter which computes maximal repeats of an in-
put sequence. It does this by building a suffix tree of the input
sequence and performing a depth first traversal of the tree to
locate all the nodes representing maximal repeats) which is
unlike the case of the proposed algorithms which work only
with internal memory.

In this paper we describe three algorithms with increasing
complexity for counting k-mers. The first of these algorithms
is designed for high-level programming languages (such
as Matlab and R) where system memory is considerably re-
stricted in both capacity and organization. This algorithm,
depending on the available system memory, works efficiently
for small values of k (up to 8 to 12) with no restriction on the
length of the input sequence. The second algorithm builds on
the conceptual framework of the first but allocates memory
parsimoniously. As a result, it is able to compute counts for
larger values of k (up to 16). The third algorithm uses heu-
ristics to extend the functionality of the second algorithm to
potentially unrestricted values of k. The striking feature of all
three proposed algorithms is that they work with internal sys-
tem memory as opposed to external memory as is the general
case with algorithms that have to deal with very large data
sets (see [4, 5], which describes SequeX, a tool that uses static
SB-trees that are indexed data structures for external memory
for analyzing k-mers). As a result they are very fast and con-
venient to amalgamate with different applications. Other algo-
rithms are limited in the k-mer length they could analyze (see
[6] which describes the program Jellyfish which is based on a
multithreaded lock-free hash table. It uses a bit-packed data
structure for memory efficiency. This algorithm is however
limited to a maximum k-mer length of 31 bases) which is not
the case with the proposed algorithms.

Results
Algorithm 01: A Linear-Time Algorithm for short
k-mer Analysis of Whole Genome Sequences
The first algorithm that we describe computes frequencies of
all bk different strings (where b is the cardinality of the alpha-
bet Σ) of length k in a sequence of length n in O(n) time. How-
ever, as it employs a constant linear array of bk elements to
store the bk different frequencies, it is encumbered by available
memory as k grows. As a result, this algorithm is only suitable
for computing k-mer frequencies for small values of k (up to
k=12), and is principally proposed as an efficient implemen-
tation in high level programming languages (such as Matlab
and R) that lack the conveniences of flexible dynamic memory
allocation routines.

The proposed algorithm is a variation of the Rabin and Karp
[7] stringing matching algorithm. It maps each nucleotide to
an integer in radix-b and uses this integer representation to
uniquely index each k-mer pattern as a base b number where
b = |Σ|. For example, if the nucleotides {A; C; G; T} are trans-
formed using the transformation (A7→0; C7→1; G7→2; T7→3)
to give a corresponding integer representation in radix-4 nota-
tion, we can view every k-mer (and its reverse compliment) as
a length k number in base-4 (see Figure 1. (a)). The idea is to
compute the index of each successive transformed k-mer (and
its reverse compliment) in O(1) time. This idea is made precise
in the k-merCount algorithm described in Methods.

Figure 1. Computation of indices by the k-merCount algorithm. The figure
illustrates the computation of successive indices of every 3-mer and its reverse
complement of the sequence ACCAGTC. (a) The radix-3 representation of
the sequence and its reverse compliment and the indices of each successive
3-mer and its reverse compliment of the sequence. (b) Computation of suc-
cessive indices. (c) Graphical illustration of the computation of the index of a
3-mer and its reverse compliment in constant time given the index and reverse
compliment index of its predecessor.

Algorithm 02: An Optimal-Time Algorithm for k-
mer Analysis
The second algorithm described below called GK-MER-
COUNT can compute k-mer frequencies for larger values of
k (up to k=16 in a computer with 2Gb of internal memory but

https://www.jscholaronline.org/
https://www.jscholaronline.org/journals/journal-of-cardiology-and-vascular-medicine/jhome.php

3

 JScholar Publishers

 J Bioinfo Comp Genom 2014 | Vol 1:101

could deal with larger values of k with the increase in inter-
nal memory or for smaller genomes) than the k-mer-Count
algorithm. It achieves this by parsimoniously allocating space
when storing individual k-mer counts. Instead of storing fre-
quencies of all bk different k-mers as the k-mer-Count algo-
rithm does, this algorithm only stores those k-mer frequen-
cies (and their reverse compliments) that appear in the input
sequence. The GK-MER-COUNT algorithm takes advantage
of the fact that although there are bk possible patterns of length
k, there could only be at most n−k + 1 different patterns in a
sequence of length n, hence, the actual number of different
patterns, M≤ min(bk; n−k + 1), is linearly bound for large val-
ues of k.

Figure 2. The k-mer tree. The figure illustrates the components and terminol-
ogy associated with a k-mer tree.

The GK-MER-COUNT algorithm uses a special dynamic tree
data structure which we call a k-mer tree (see Figure 2.) for
holding the frequencies of all sub-sequences of a specified
length occurring in agiven sequence. A k-mer tree is a modi-
fied full n-array tree where n = |Σ| = b, (for example, n = 4 for
Σ = {A, C, G, T}). A k-mer tree for counting the frequencies of
all length k sub-strings of a sequence will have height k. Every
branch node of a k-mer tree is a b element array of pointers re-
ferring to either a branch node or a leaf node. Each element of
the array (branch node) implicitly refers to a unique element in
Σ by way of its index (e.g. index(0) A, index(1) C, index(2)rr
G, index(3) T). In a k-mer tree, a complete branch or simply
a branch is a branch that starts from the internal branch node
at depth 0 and ends in a leaf node at depth k. An incomplete-
branch or a sub-branch of the tree is a branch that starts from
the internal branch node at depth 0 and ends in an external
branch node at depth k− 1 and hence not complete (does not
have a leaf node). A k-mer tree has only complete and incom-
plete branches as defined above. Every branch of a k-mer tree
represents a unique k-mer whose sequence is read implicitly
from the index of the pointers along its path. Every leaf node of
the tree has three essential elements, a counter to hold the fre-
quency of its representative k-mer, a suffix pointer which is set
to point to the external branch node of the sub-branch forming
its length k− 1 suffix and a reverse compliment pointer, rcomp,
set to point to the leaf-node of its reverse compliment.

Figure 3. A full 4-mer-tree. A full 4-mer-tree for counting the frequencies of
distinct 4-mers in a sequence comprising of characters, and . As the tree is a
complete 4-mer tree, it has only complete branches. Every branch represents
a distinct 4-mer. Every leaf node points to an external branch node that is the
external branch node of the sub branch representing the suffix of the 4-mer
along the branch to the leaf node. In analogy to the k-mer-Count algorithm
described in Section , moving from a leaf node to the external branch node
represents a shift to the left by one position of the radix b digit of length k (in
this case, a binary digit of length 4). Proceeding down to a leaf node is analo-
gous to adding a new digit as a lowest order digit of the k-digit radix-b number
(4-digit binary number).

The GK-MER-COUNT algorithm is conceptually similar to
the k-mer-Count algorithm described above. This is demon-
strated in Figure 3. on a binary alphabet, Σ = {;}, for count-
ing the frequencies of all 24, 4-mers of a sequence. The GK-
MER-COUNT algorithm uses a circular buffer (of length k) to
keep track of successive k-mers as characters are read from the
input sequence thereby maintaining a linear read time while
still retaining access to the full k-mer sequence at a particular
instance. The complete GK-MER-COUNT algorithm is de-
scribed in detail in Methods. However, in brief, the algorithm
works as follows: Branches of a k-mer tree represent distinct
k-mers. Adding or completing a branch in a k-mer tree in the
context of the GK-MER-COUNT algorithm involves 1) add-
ing the complete branch representing the k-mer (from the root
node to the leaf node) or completing the branch by adding a
leaf to the appropriate external branch node, 2) adding the sub
branch representing the k− 1 suffix of the k-mer, 3) adding the
branch representing the reverse compliment of the k-mer, and,
4) adding the sub branch representing the k− 1 suffix of the
reverse compliment. Sequence information of the k-mer nec-
essary for this task is red from the circular buffer mentioned
above. A pointer is established from the leaf node of the k-mer
branch to the external branch node of its suffix sub branch.
Similarly, a pointer is established from the leaf node of the re-
verse compliment branch to the external branch node of the
reverse compliment’s suffix sub branch. A pointer is also estab-
lished between the leaf nodes of the k-mer branch and its re-
verse compliment branch. The GK-MER-COUNT algorithm
maintains a prefix pointer that always points to the external
branch node of the sub branch that forms the k− 1 prefix of
the next k-mer.

In the initialization step, the first branch of the k-mer tree is
added representing the first k-mer of the input sequence. The
prefix pointer is directed to the external branch node of its
suffix sub branch. Note that the prefix pointer now points to

https://www.jscholaronline.org/
https://www.jscholaronline.org/journals/journal-of-cardiology-and-vascular-medicine/jhome.php

4

 JScholar Publishers

 J Bioinfo Comp Genom 2014 | Vol 1:101

the external branch node of the prefix sub branch of the next
k-mer. Now, at a particular instance of the algorithm, when the
next character is read, the algorithm checks whether the leaf
node for the read character exists in the external branch node
pointed to by the prefix pointer. If the leaf node does exist
(the k-mer is already in the tree), the algorithm simply incre-
ments its frequency counter and that of its reverse compliment
(using the rcomp pointer) and using the information in the
suffix pointer of the leaf node, moves the prefix pointer to the
external branch node of the suffix sub branch of the k-mer. If
the leaf node does not exist (the k-mer has not yet being added
to the tree), it is added along with the sub branch represent-
ing the k − 1 suffix of the k-mer, the branch representing the
reverse compliment of the k-mer and the sub branch repre-
senting the k − 1 suffix of the reverse compliment. As before,
pointers are established from the leaf nodes to the respective
external branch nodes of the suffix sub branches. A pointer is
also established between the leaf nodes of the complimentary
branches. The prefix pointer is moved to the external branch
node of the suffix sub branch of the k-mer. A simple example
underlying the above process is illustrated in Figure 4.

The GK-MER-COUNT algorithm has a running time of Θ(M
(k − 1) + n), where M is the actual number of distinct k-mers in
the input sequence. At its worst case, the algorithm has O(nk)
running time. This occurs when every length k sub sequence
of the input sequence is distinct, i.e. M = n. However, in prac-
tice M is a lot smaller than n due to multiple occurrences of
distinct k-mers. On average, given an equal nucleotide distri-
bution on the input sequence, one would expect to see n=4k
hits per k-mer. According to this statistic the expected number
of multiple occurrences per distinct k-mer decrease exponen-
tially with the increase in k resulting in larger trees. This prob-
lem is addressed in the next algorithm described below.
A complete k-mer tree, i.e., a k-mer tree representing all bk
distinct k-mers will have bk leaf nodes and (bk− 1)=3 branch
nodes. This is space wise manageable for small values of k. As
explained above, for large values of k, the actual number of
distinct k-mers, M , in the input sequence is linearly bound
therefore the size of the k-mer tree is upper bound by the
length of the input sequence. In the worst case, the GK-MER-
COUNT algorithm is linear in space (see Figure 5 (A)). The
GK-MER-COUNT algorithm is suitable for counting the k-
mer frequencies of DNA sequences for moderate values of k
(up to k =16 in a machine with 2Gb of internal memory but
could support larger k in machines with larger memory or for
smaller genomes).

Figure 4. Example: step by step creation of a k-mer tree. The figure demon-
strates the creation of a k-mer tree for counting the frequencies of different
3-mers in sequence AATATTATAA. For simplicity we assume Σ = {A; T
}. In the full 2-ary tree that is generated, we assume that, the left cell of a
branch node represents A and the right cell represents T (in practice, these
will be pointers with only implicit reference to the nucleotide). Every time a
leaf node is added or visited, the counter for its respective k-mer and that of
its reverse compliment are incremented by one. In the initialization step in
(a), the branch AAT is added followed by the sub-branch of its suffix AT. A
pointer is established from the leaf node of AAT to the bottom node (external
branch node) of the sub-branch AT. The branch ATT, which is the reverse
compliment AAT, along with the sub-branch of its suffix TT are added next. A
pointer is established between the leaf nodes of the complimentary branches
AAT and ATT. The prefix pointer (the pointer pointing to the external branch
node to which the next leaf node will be added, or, from which the next leaf
node will be visited) is moved to the external branch node of sub-branch AT.
In (b), the leaf node A is added from the external branch node of sub-branch
AT establishing the branch ATA. Similar to (a), its suffix TA and reverse com-
pliment TAT are added. The prefix pointer is moved to the sub-branch TA. In
(c) leaf node T is visited as it is already in sub-branch TA, (incrementing the
frequency counter of 3-mer TAT and its reverse compliment ATA), and the
prefix pointer is moved to the sub-branch AT. In (d), similar to (c), the leaf
node T is visited and the prefix pointer is moved to the sub-branch TT. In (e),
leaf node A is added establishing the 3-mer, TTA, and its reverse compliment
TAA. The prefix pointer is moved to the sub-branch TA. Like above, in (f), leaf
node T is visited. In (g), leaf node A is visited and in (h) leaf node A is visited.

Algorithm 03: A Heuristic Algorithm for Large k-
mer Analysis
The third algorithm, called PGK-MER-COUNT , is designed
to count k-mer frequencies for large values of k. It is a heuristic
algorithm that works on the understanding that the desired
k-mers are those that appear with high frequency in the ana-
lyzed DNA sequence. The expected frequency of a given k-mer
(n=4k) decreases exponentially with the increase in k. As a re-
sult the frequency of a majority of k-mers of a sequence will
be one or very small for large values of k. On the other hand,
space required to store different k-mer counts increases expo-
nentially with the increase in k, reaching a maximum when
k = n/2, with O(n2) representations. This is extremely large
even for small genome sequences of around a million bases
with much if not all of the k-mers having a frequency of one.
An investigator is usually interested in not these low frequency
k-mers but those k-mers that appear with relatively high fre-
quency in the analyzed sequence. The PGK-MER-COUNT
algorithm can be used to obtain these k-mers very efficiently.

The PGK-MER-COUNT algorithm is described in detail
in Methods but in brief the algorithm works as follows: The
PGK-MER-COUNT algorithm performs two scans of the in-
put sequence. The first scan performs the GK-MER-COUNT
algorithm described above with a sub k-mer length, k0, that is
much smaller than the required k-mer length k. The second
scan uses the frequency counts of the sub k-mers computed
in the first scan to heuristically extend the k-mer tree to ac-
commodate the frequency counts of the desired k-mers (of
length k) that appear with a frequency greater than or equal to
a given threshold value, in the scanned sequence. The value is
the minimum desired k-mer frequency of interest.

https://www.jscholaronline.org/
https://www.jscholaronline.org/journals/journal-of-cardiology-and-vascular-medicine/jhome.php

5

 JScholar Publishers

 J Bioinfo Comp Genom 2014 | Vol 1:101

In its second scan, the PGK-MER-COUNT algorithm ex-
tends the initial k-mer tree generated in the first scan (hav-
ing k-mer length k0) to accommodate the desired k-mers of
length k. This is achieved by adding branch extensions to the
complete branches of the initial k0-mer tree (or simply incre-
mentingthe k-mer count if the extended branch already ex-
ists). A branch extension is added if and only if the substring
(of length k) representing the extended branch is encountered
in the scanned sequence, s, with a minimum k0 on k substring
abundance greater than or equal to the threshold . The mini-
mum k0 on k substring abundance of a length k substring in
sequence s is define as the minimum frequency in the k0-
mer tree of the k−k0+ 1 substrings of length k0 in the length k
string. This is a heuristic extension based on the rational that
all k−k0+ 1 substrings of length k0< k of any substring of length
k in sequence s with a frequency greater than or equal to the
desired minimum frequency, , will havefrequencies greater
than or equal to in s. Conversely, if any string of length k in
sequence s contains a substring of length k0< k with a frequen-
cy less than α, then the string itself will have a frequency less
than α. In other words the maximum frequency of a string of
length k in sequence s is upper bounded by the minimum k0
on k substring abundance of that string for some k0< k. Based
on this observation, we only need to add branch extensions to
the k0-mer tree if and only if the extension has a minimum k0
on k substring abundance greater than or equal to the desired
frequency.

Figure 5. Memory utilization of the P/GK-MER-COUNT algorithms. Memory utilization of the (A) GK-MER-COUNT algorithm for different values of k and
(B) PGK-MER-COUNT algorithm, with = 2, (k0; k) = (22; 120); (16; 120) and (16; 50), on the human, mouse and 50 archaea genome sequences listed in Sup-
plemental Table 01. (C) Comparative histogram of 50-mer and 10-mer frequency counts.

The minimum k0 on k substring abundance for all length k
substrings in sequence s can be computed in linear time by
traversing along the leaf nodes of the k0-mer tree using the
suffix pointer. Hence the time complexity of the second scan is
O(n + m(k−k0)) where m is the number of branch extensions
added to the k0-mer tree and is bounded by 0 ≤m≤ (n−k + 1)/α
. Generally, m will be small for large values of kand . The sub
k-mer length k0 of the initial k0-mer tree plays an import part
in the efficiency in building the subsequent k-mer tree. The
larger the value k0, the more efficient will be the building of the
subsequent k-mer tree. However, the sub k-mer length k0 is re-
stricted by the constraints underlying the GK-MER-COUNT
algorithm. Ideally, , which is the desired minimum k-mer fre-
quency will be a value greater than the expected k0-mer fre-
quency, n/4k0. Depending on the available system resources,
one can reduce subject to this constraint by increasing k0.

The amount of memory required for the PGK-MER-COUNT
algorithm consists of the memory required for the first scan
performed by the GK-MER-COUNT algorithm which is lin-
ear and the additional memory required for the extensions
added in the second scan which is also linear for large input
sequences. The PGK-MER-COUNT algorithm also has a lin-
ear worst case space utilization (see Figure 5 (B)).
The Modified PGK-MER-COUNT Algorithm

Performance and Evaluation

Time and space utilization

If sufficient memory is available to accommodate an initial sub
k-mer length such that n/4k0 < α for α = 2, we can use a sim-
ple extension to the PGK-MER-COUNT algorithm to output
all k-mers (including those with frequency one) in very long
input sequences for large values of k. This is made possible by
observing that every sub-substring of length k in the input se-
quence with a minimum k0 on k substring abundance less than
α = 2 has frequency one. Therefore, all length k sub-sequences
encountered in the second scan of the PGK-MER-COUNT
algorithm with a minimum k0 on k substring abundance of
one can be directly sent to output (with a frequency count of
one) without any additional cost. No record of it needs to be
kept in memory. In practice, sub k-merlengths (k0) of 14 to 16
can handle input sequences of 100 million to a billion bases
in length.

The performance of the algorithms were evaluated using sev-
eral whole genome sequences. These include experiments on
Human chromosomes (1, . . . , 22,X,Y), Mouse chromosomes
(1, . . . , 19,X,Y), 681 bacteria genome sequences and 50 ar-
chaea genome sequences, downloaded from the Ensembl[8]
and EMBL [9], nucleotide sequence databases. These evalua-
tions were performed to ascertain the space and time utiliza-
tion of the algorithms. The experiments were carried out on a
Linux machine with a 1.0Ghz processor and 32Gb RAM.

In our first experiment we tested the GK-MER-COUNT and
PGK-MER-COUNT algorithms on 50 archaea genome se-
quences to establish the level of performance of thesetwo algo-
rithms on time and space utilization. The 50 archaea genome
sequences, listed in Supplemental Table 01, ranged in length
between 5.7 and 0.3 million bases with an average length of 2.1
million bases. In total they comprised of roughly 106:5 million

https://www.jscholaronline.org/
https://www.jscholaronline.org/journals/journal-of-cardiology-and-vascular-medicine/jhome.php

6

 JScholar Publishers

 J Bioinfo Comp Genom 2014 | Vol 1:101

bases. As the algorithms simultaneously scan both the positive
and negative strands of a given sequence, the actual sequence
length scanned by them is double the input sequence length.

Figure 6. (A) shows the time taken by the GK-MER-COUNT
algorithm to ascertain the k-merfre-quencies of the 50 archaea
genome sequences as k varies from 5 to 50. It is evident that
the algorithm performs fastest when k is small and increases
linearly in time from around k = 15. There is a marked in-
creases in time between k = 10 and k = 15. This rapid increase
in time expended can be attributed to the sharp increase in
the number of leaf nodes generated by the algorithm between
these two k-mer lengths as seen in Figure 6. (B). We can see
from Figure 6. (B) that the number of leaf nodes generated by
the GK-MER-COUNT algorithm reaches an upper bound,
which as explained above is determined by min(4k; n−k + 1).
The linear increase in time, observed in Figure 6. (A), beyond
k = 15, for computing the k-mer frequencies as k increases can
be attributed to the linear increase in the number of branch
nodes generated by the GK-MER-COUNT algorithm as k in-
creases as seen in Figure 6. (C). As a testimony to the speed
of the GK-MER-COUNT algorithm, we see from Figure 6.
(A) that it can compute the 50-mer frequencies of 50 archaea
whole genomes in less than an hour. It should be stated that a
bulk of this time is spent on writing results to external storage.

Figure 6. Performance of the GK-MER-COUNT algorithm. Performance of the GK-MER-COUNT algorithm on the 50 archaea genome sequences listed in
Supplemental Table 01.

Figure 7. Performance of the PGK-MER-COUNT algorithm. Performance of the PGK-MER-COUNT algorithm, with = 2, on the 50 archaea genome sequences
listed in Supplemental Table 01.

Figure 7. (A) shows the running time of the PGK-MER-
COUNT algorithm for computing the k-mer frequencies
of the 50 archaea genome sequences described above, with a
minimum desired k-mer frequency of 2. The algorithm was

run with a sub k-mer length of 12. The running time of the
PGK-MER-COUNT algorithm decreases exponentially with
the increase in k. This is because the algorithm in generating
Figure 7. (A) is only concerned with k-mers with frequencies
greater than or equal to two eliminating the need to keep track
of a vast number of k-mers having frequency one. This can be
seen by looking at Figures 7. (B) and (C) which shows an expo-
nential drop in the number of leaf and branch nodes generated
by the PGK-MER-COUNT algorithm as k increase. Figure
5. (C) shows the difference in frequency counts between the
10-mer and 50-mer frequencies of the 50 archaea genome
sequences described above. It can be seen that a substantial
number of 50-mers have frequency one with the counts drop-
ping rapidly with increasing frequency. The 10-mers on the
other hand show a more uniform decrease in counts between
adjacent frequencies with smaller differences between them.
By avoiding low frequency counts, the PGK-MER-COUNT
algorithm is able to make substantial savings in both time and
space utilization. This savings increase exponentially with the
increase in k-mer length.

Between genome composition analysis
An interesting biological exercise with a verity of ap-plications
is the identification of genomes (from an array of bacteria
genomes for example) having sub-sequences of a particular
length that appear in low abundance in another genome (such
as that of a newly sequenced species for example). Given a
genome and a sub-sequence length of interest, being able to
quickly and efficiently identify other genomes that have a low

https://www.jscholaronline.org/
https://www.jscholaronline.org/journals/journal-of-cardiology-and-vascular-medicine/jhome.php

7

 JScholar Publishers

 J Bioinfo Comp Genom 2014 | Vol 1:101

Identifying longest duplicated segments

abundance of hits for sub-sequences from the first genome is a
challenging but important problem in computational biology.
To demonstrate the utility of the GK-MER-COUNT and PGK-
MER-COUNT algorithms, we used them to gather statistics
of the abundance of common 25-mers in the mouse chromo-
somes and 681 bacteria sequences. These results are shown in
Supplemental Table 02. We used the PGK-MER-COUNT al-
gorithm to obtain all 25-mers in the mouse chromosomes with
a frequency of 2 or greater. We used the GK-MER-COUNT
algorithm to obtain all 25-mers of the 681 bacteria sequences.

From this analysis we see that the mouse chromosome with
the highest number of bacteria sequences that did not have
any 25-mer that appeared at least twice was chromosome Y
(528 bacteria sequences) and the lowest was chromosome 1
(340 bacteria sequences). There were 256 bacteria sequences
without a single 25-mer that appeared at least twice in any
of the mouse chromosomes. The largest of these was the soil
bacterium ‘SolibacterusitatusEllin 6076’ with a chromosome
length of 10.0 Mbp. There were 152 bacteria sequences that
had at least one 25-mer that appeared at least twice in every
mouse chromosome.

The largest of this was the bacterium ‘Streptomyces avermitilis
MA-4680’ with a chromosome of 9.0 Mbp and the smallest
was the bacterium ‘Candidatus Sulcia muelleri GWSS’ with
a chromosome length of 0.25 Mbp. There were 425 bacteria
sequences that had at least one 25-mer that appeared at least
twice in at least one of the mouse chromosomes. The bacte-
rium ‘Mycoplasma hyopneumoniae 7448’ with a chromosome
length of 0.92 Mbp had the highest number of unique 25-mers
(3173) with at least two hits in a mouse chromosome.

The PGK-MER-COUNT algorithm can find k-mer counts for
very large values of k in very long input sequences. In order to
validate this assertion, we used the PGK-MER-COUNT al-
gorithm to find the longest duplicated sequence in each of the
human chromosomes. In order to avoid interspersed repeats
and low complexity DNA sequences, we used the masked
version of the genome sequence of the human chromosomes
obtained from Ensembl. The identified repeated segments for
each chromosome are listed in Supplemental Table 03. The
longest duplicated sub-string of an input sequence is given
by the PGK-MER-COUNT algorithm when the input k-mer
length k is such that it is the largest value for which a hit is not-
ed when the algorithm is run with set to 2. This value of k can
be easily found by iteratively running the PGK-MER-COUNT
algorithm with different values of k until the value of k is found
for which there is a hit but not for k+1.

From Supplemental Table 03.we see that human chromosome
11 has the longest duplicated sequence extending 5829 bases
in spite of it being only the 12th largest in size. On the other
hand, the longest duplicated sequence in chromosome 21 is
569 bases. It is interesting to note that after chromosome 11, it
is the two sex chromosomes, chromosomes Y and X that have
the longest duplicated sequence extending 5681 and 4720 bas-
es respectively. Chromosome X is the most conserved human

chromosome [10]. Chromosome 8 has two longest duplicated
sequences of 3443 bases each. While the longest duplicated
sequence of chromosomes 15 and 16 are in fact triplicates ex-
tending 3914 and 2777 bases respectively, the longest dupli-
cated sequence of chromosome 13 is a quintuplicate extending
1261 bases.

Discussion

Methods

The GK-MER-COUNT and PGK-MER-COUNT algorithms
are efficient algorithms for counting k-merfre-quencies of
whole genome sequences. As they work with system memory
in spite of the large amount of data they need to handle, they
are very fast and convenient to use. They come at a time when
an in-creasing number of newly sequenced genomic data are
being added to the existing array of whole genome sequences
creating a big demand for efficient tools to perform task of this
nature.

Although the GK-MER-COUNT algorithm works with mod-
erate length k-mers, it falls within the range of many of the
k-mers of biological interest such as transcription factor bind-
ing sites, restriction sites, etc. The PGK-MER-COUNT algo-
rithm on the other hand can gather k-mer statistics for large
values of k from tens to thousands of bases in length serving
the need of many applications that require k-merfrequency
counts. Although the PGK-MER-COUNT algorithm is de-
signed to gather high frequency k-mer counts for large k in
long genomic sequences, with sufficient memory it can be
used in its modified form to gather k-mer counts of all k-mers.

The k-mer-Count algorithm is the fastest amongst the three al-
gorithms described above for small values of k. The GK-MER-
COUNT algorithm is faster than the PGK-MER-COUNT
algorithm for computing all frequency counts for moderate
values of k. The modified PGK-MER-COUNT algorithm
can sometimes outperform the GK-MER-COUNT algorithm
for computing all frequency counts for moderate values of k,
however its output is not ordered unlike that of the GK-MER-
COUNT algorithm. The modified PGK-MER-COUNT algo-
rithm on the other hand can compute all the frequency counts
for large values of k. A majority of time expended by these
algorithms is spent on writing output to external storage.

The k-mer-Count Algorithm
The k-mer-Count algorithm takes as input, a DNA sequence
file f, the k-mer length k, and returns an array, M , of length
4k, with the frequencies of all 4k different patterns of length k
in the DNA sequence and its reverse compliment. The algo-
rithm uses the function getchar to read a character from f. The
function convert, used in the algorithm, takes a nucleotide and
returns its corresponding radix-4 digit. The function compli-
ment returns the compliment of a converted nucleotide. Also
used in the algorithm are the two functions div and mod that
return the quotient and remainder of a division operation re-
spectively. Arrays in the algorithm are one-based arrays.

https://www.jscholaronline.org/
https://www.jscholaronline.org/journals/journal-of-cardiology-and-vascular-medicine/jhome.php

8

 JScholar Publishers

 J Bioinfo Comp Genom 2014 | Vol 1:101

K-MER-COUNT(f, k)

1 h ← 4k-1

2 Iw ← 0
3 Ic ← 0
4 for i← 1 to k
5 c ← getchar(f)
6 Iw ← Iw+ convert(c) × 4k-i

7 Ic ← Ic+ compliment(convert(c)) × 4i-1

8 M [Iw+ 1] ← M [Iw+ 1] + 1
9 M [Ic+ 1] ← M [Ic+ 1] + 1
10 while (c←getchar(f)) ≠eof
11 Iw ← ((Iw mod h) × 4) + convert(c)
12 Ic ← (Ic div 4) + compliment(convert(c)) × h
13 M [Iw+ 1] ← M [Iw+ 1] + 1
14 M [Ic+ 1] ← M [Ic+ 1] + 1
15 return M

The k-mer-Count algorithm works as follows. Lines 2-9 com-
putes the indices of the first length k sub-string and its reverse
complement of the input sequence. Line 6 computes the sub-
string index along the forward strand while line 7 computes
the index of its reverse complement. This initialization is
achieved in O(k) time. Lines 8 and 9 update the corresponding
counts of the initial k-mer and its reverse compliment respec-
tively. Lines 10-14 iteratively compute the indices of succes-
sive k-mers and their reverse complements and update their
counts accordingly. The algorithm achieves a linear time per-
formance by computing, in lines 11 and 12 respectively, the
indices of every successive length k sub-string and its reverse
complement in constant time. In order to compute the index
of a sub-string in constant time the algorithm uses the fact that
every successive sub-string has as its k − 1 higher order dig-
its the k − 1 lover order digits of its immediate predecessor.
Therefore, instead of computing the value of the index of the
sub-string from its k digits, line 11 simply shifts by one posi-
tion to the left the k − 1 lower order digits of its immediate
predecessor (which is achieved in constant time by taking the
predecessor index value modulo 4k-1 multiplied by 4) and adds
the new digit as a lowest order digit to give the value of the cur-
rent sub-string index. This is graphically illustrated in Figure
1. (c). A similar argument follows in computing the index of
the reverse complement. In computing the index of the reverse
compliment, line 12 simply shifts by one position to the right
the k − 1 higher order digits of the reverse complement of the
immediate predecessor (which is achieved in constant time by
taking the quotient of the division of the value of the predeces-
sor reverse compliment index by 4) and adds the new digit as
a highest order digit (by multiplying it by 4k-1) to give the value
of the index of the reverse compliment (see Figure 1.(b) and
(c)).

In the discussions that follow, we refer to nucleotide characters
converted to their radix-4 digit simply as characters instead of
explicitly mentioning that they are the numerical representation
of the nucleotides.

The GK-mer-Count Algorithm
The GK-MER-COUNT algorithm takes as input a sequence
file, f, of DNA sequence, s, the length k of the k-mer of inter-
est, and builds a k-mer tree embodying the frequency counts
of all k-mers (and their reverse compliments) in s. The algo-
rithm uses a circular buffer, Gbuffer, of length k to keep track
of successive k-mers along the input sequence. The GK-MER-
COUNT algorithm uses the function getchar to read a char-
acter from file f. It also uses the functions convert to convert
a nucleotide to its corresponding radix-4 digit, (A→ 0; C →1;
G → 2; T → 3), and compliment to get the compliment of a
converted nucleotide, (0 → 3; 1 → 2; 2 → 1; 3 → 0). Also used in
the algorithm are the two functions div and mod that returns
the quotient and remainder of a division operation respective-
ly. An internal-branch-node is an array of pointers pointing
to other branch nodes. An external-branch-node is an array
ofpointers pointing to leaf nodes. Arrays in the algorithm are
zero-based arrays.
GK-MER-COUNT (f; k)
1 for i← 0 to k− 1
2 c ← getchar(f)
3 Gbuffer[i] ← convert(c)
4 root ← new internal-branch-node[4]
5 origin ← 0
6 prefix ← INSERT-LEAF (INSERT-BRANCH(origin))
7 while not eof(f) do
8 c ← getchar(f)
9 ADD2COUNT(convert(c))

The GK-MER-COUNT algorithm works as follows. Lines 1-3
of the algorithm populate the buffer, Gbuffer, with the first k
characters of the input sequence. Line 4 creates the first inter-
nal-branch-node at depth 0 and establishes the pointer root as
its handle. Line 5 sets the variable origin to 0 to indicate the
current location of the k-mer in the circular buffer, Gbuffer.
In line 6, the algorithm uses the two functions Insert-Branch
and Insert-Leaf to add the initial k-mer to the k-mer tree. The
return value from the function Insert-Leaf which is a pointer
to the external branch node of the suffix sub-branch of the k-
mer, is assigned to the pointer variable, prefix. Lines 7-9 read
successive characters from the input sequence until the end of
file is reached and adds the resulting k-mers to the k-mer tree
via the function ADD2COUNT.
INSERT-BRANCH(p)
1 x ← root
2 for i← 1 to k− 2
3 r ← Gbuffer[p]
4 if x[r] = NIL then
5 x[r] ← new internal-branch-node[4]
6 x ← x[r]
7 p ← (p + 1) mod k
8 r ← Gbuffer[p]
9 if x[r] = NIL then
10 x[r] ← new external-branch-node[4]
11 x ← x[r]
12 return x

https://www.jscholaronline.org/
https://www.jscholaronline.org/journals/journal-of-cardiology-and-vascular-medicine/jhome.php

9

 JScholar Publishers

 J Bioinfo Comp Genom 2014 | Vol 1:101

The function INSERT- BRANCH takes the index of the start of
the current k-mer on Gbuffer and adds the sub-branch repre-
senting that k-mer to the k-mer tree. It returns a pointer to the
external-branch-node of the sub-branch. The algorithm starts
from the first internal branch node at depth 0 by settingthe
incremental pointer variable x to root. Lines 2-7 add the re-
maining (k - 2) internal branch nodes to the tree if they do not
exist. Line 3 reads the character indexed by the variable p on
Gbuffer. Line 4 checks to see whether an internal branch node
is already present for this character. If it is a new sequence (i.e.
there is no internal branch node extending from this charac-
ter) an internal branch node is added for the character in line
5. In line 6, the incremental pointer x is advanced to the next
internal branch node indexed by r. In line 7, the index p is in-
cremented to the next character of the k-mer on Gbuffer. Lines
9-10 add the external branch node of the sub-branch of the k-
mer. Line 9 checks to see whether this node already exists and
line 10 adds it if it does not. In line 11, the pointer variable x is
moved to point to the external branch node of the k-mer sub-
branch and line 12 returns this pointer to the calling routine.
INSERT-REVERSE-COMPLIMENT-BRANCH(p)
1 x ← root
2 for i← 1 to k− 2
3 r ← compliment(Gbuffer[p])
4 if x[r] = NIL then
5 x[r] ← new internal-branch-node[4]
6 x ← x[r]
7 p ← (p − 1) mod k
8 r ← compliment(Gbuffer[p])
9 if x[r] = NIL then
10 x[r] ← new external-branch-node[4]
11 x ← x[r]
12 return x
The function INSERT-REVERSE-COMPLIMENT-BRANCH
is similar to the function Insert-Branch except that it adds the
reverse compliment sub-branch of the k-mer in Gbuffer to the
k-mer tree.

INSERT-LEAF(x)
1 p ← (origin + k − 1) mod k
2 r ← Gbuffer[p]
3 x[r] ← new leaf-node
4 x[r] → extension ← NIL ▷ Used in PGK-MER-
COUNT
5 x[r] → count ← 1
6 x[r] → suffix ←INSERT-BRANCH((origin + 1) mod k)
7 x[r] → rcomp ← INSERT-COMPLIMENT-LEAF(INSERT-
REVERSE-COMPLIMENT-BRANCH((origin−1) mod k))
8 (x[r] → rcomp) → rcomp ← x[r]
9 return x[r] → suffix
The function INSERT-LEAF takes a pointer to the external
branch node of the k-mer sub-branch of the k-mer in Gbuffer
and adds its leaf node (to complete the branch). In line 1, the
index p is set to point to the last character of the k-mer in
Gbuffer. The implicit index representing this character giv-
ing the location on the external branch node is read in Line 2.
Line 3 adds the new leaf node. Line 4 initializes the extension
pointer of the leaf node. Line 5 sets the variable count of the
leaf node to 1. Line 6 calls the function INSERT-BRANCH to

add the k+1 prefix of the k-mer to the k-mer tree and sets the
suffix pointer of the leaf node to its return value establishing
a pointer link between the leaf node and the external branch
node of the prefix sub-branch of the k-mer. Line 7 uses the
functions INSERT-REVERSE-COMPLIMENT-BRANCH and
INSERT-COMPLIMENT-LEAF to add the reverse compliment
of the k-mer to the k-mer tree. The return value of the func-
tion INSERT-COMPLIMENT-LEAF is assigned to the pointer
variable rcomp establishing a pointer link between the leaf
node of the k-mer and its reverse compliment leaf node. Line 8
uses the newly establishedrcomppointer to access the reverse
compliment leaf node toset its rcomp pointer to point to the
current leaf node. Line 9 returns the pointer to the external
branchnode of the suffix sub-branch of the k-mer, to the call-
ing function.
INSERT-COMPLIMENT-LEAF(x)
1 p ← origin
2 r ← compliment(Gbuffer[p])
3 x[r] ← new leaf-node
4 x[r] → extension ← NIL ▷ Used in PGK-MER-COUNT
5 x[r] → count ← 1
6 x[r] → suffix ← INSERT-REVERSE-COMPLIMENT-
BRANCH((origin − 2) mod k)
7 return x[r]
The function INSERT-COMPLIMENT-LEAF is similar to the
function Insert-Leaf except that it does not have the two cor-
responding lines 7 and 8 of function INSERT-LEAF.

ADD2COUNT(v)
1 origin ← (origin + 1) mod k
2 Gbuffer[(origin + k − 1) mod k] ← v
3 if prefix [v] ≠ NIL then
4 prefix [v] → count + +
5 (prefix [v] →rcomp)→count + +
6 prefix ← prefix [v] → suffix
7 else
8 prefix ← INSERT-LEAF (prefix)
The function ADD2COUNT acts as the main function that
adds k-mers to the k-mer tree as new characters are read from
the input sequence. In line 1, the function ADD2COUNT sets
the variable origin to the index of the new k-mer in Gbuffer. In
line 2, the character read from the input sequence is added to
Gbuffer. Line 3 checks to see if there is a leaf node representing
the read character extending from the external branch node
pointed to by the prefix pointer (i.e. if the k-mer is already in
the k-mer tree). Ifthe leaf node does exist, line 4 increments
by one the variable counter which holds the frequency of the
k-mer. Line 5 uses the rcomp pointer to access the reverse com-
pliment of the k-mer and increment itscounter by one. Line
6 moves the prefix pointer to the external branch node of the
suffix sub-branch of the k-mer which is given by the suffix
pointer in the leaf node. If the leaf node does not exist, line 8
adds it to the k-mer tree.

The PGK-MER-COUNT Algorithm
The PGK-MER-COUNT algorithm takes as input a sequence
file, f, of a DNA sequence, s, the sub k-mer length, k0, and k-
mer length, k, where 1 < k0< k− 1, and, the minimum desired
k-mer frequency of interest, , and builds a k-mer tree embody-

https://www.jscholaronline.org/
https://www.jscholaronline.org/journals/journal-of-cardiology-and-vascular-medicine/jhome.php

10

 JScholar Publishers

 J Bioinfo Comp Genom 2014 | Vol 1:101

ing the frequency counts of all k-mers (and their reverse com-
pliments) in s with a minimum k0 on k substring abundance
greater than or equal to α. The algorithm uses a circular buffer,
PGbuffer, of length k.
The PGK-MER-COUNT algorithm takes as input a sequence
file, f, of a DNA sequence, s, the sub k-mer length, k0, and k-
mer length, k, where 1 < k0< k− 1, and, the minimum desired
k-mer frequency of interest, , and builds a k-mer tree embody-
ing the frequency counts of all k-mers (and their reverse com-
pliments) in s with a minimum k0 on k substring abundance
greater than or equal to α. The algorithm uses a circular buffer,
PGbuffer, of length k.

The PGK-MER-COUNT algorithm uses the following global
variables

q ▷PGbuffer index(position to insert next character
read from file)
a ▷PGbuffer index
b ▷PGbuffer index

n ▷ counter of consecutive number of sub k-mers with
sub-string abun-dance greater than or equal to α.
w ▷ constant number of substrings of length k0 in string
of length k
m ▷ pointer to a leaf-node
e ▷ pointer to the leaf-node for extension

PGK-MER-COUNT (f; k0; k; α)
1 for i← 0 to k0− 1
2 c ← getchar(f)
3 Gbuffer[i] ← convert(c)
4 root ← new internal-branch-node[4]
5 origin ← 0
6 prefix ← INSERT-LEAF (INSERT-BRANCH((origin
))
7 while not eof(f) do
8 c ← getchar(f)
9 ADD2COUNT(convert(c))
10 move file pointer to beginning of file (f)
11 for i← 0 to k− 1
12 c ← getchar(f)
13 PGbuffer[i] ← convert(c)
14 w ← k − k0+ 1
15 a ← k0 − 1
16 b ← 0
17 q ← k − 1
18 l ← root
19 while b < (k0− 1) do
20 l ← l[PGbuffer[b]]
21 b + +
22 m ← l[PGbuffer[b]]
23 e ← m
24 n ← 0
25 PG-Do()
26 while not eof(f) do
27 c ← getchar(f)
28 PG-ADD2COUNT(convert(c))

The PGK-MER-COUNT algorithm performs two scans of
the input sequence. The first scan given in lines 1-9 imple-
ments the GK-MER-COUNT algorithm described above
with a sub k-mer length k0 to generate a k0-mer tree. This k0-
mer tree is built upon by the second scan of the algorithm by
adding branch extensions for k-mers with a minimum k0 on
k substring abundance greater than or equal to α found in the
input sequence. Line 10 resets the file pointer to the begin-
ning of the input file. Lines 11-13 populates the circular buffer,
PGbuffer, with the first k characters of the input sequence. In
line 14, the constant w is assigned the length of the branch
extension. In line 15, the index variable a is set to the index of
the last character of the first k0-mer of the k-mer in PGbuffer.
In line 16, the index variable b is set to the first character of
the k-mer in PGbuffer and in line 17, the index variable q is
set to thelast character of the k-mer in PGbuffer. In line 18,
the incremental pointer l is set to point to the first internal
branch node of thek0-mer tree. Lines 19-21 move the incre-
mental pointer l down the tree fromthe first internal branch
node to the external branch node of the first k0-mer of the
k-mer in PGbuffer by traversing PGbuffer using the index vari-
able b. In line 22, the pointer variable m is set to point to the
leaf node of the k0-mer. In line 23, the pointer variable e is also
set to point to the leaf node of the k0-mer. The pointer variable
e is used to access the leaf node of the k0-mer when a branch
extension is added. In line 24, the counter variable n is set to
zero. The variable n is used to count the number of k0-mers in
the k-mer with a frequency greater than . Line 25 calles the
function PG-Do which decides whether a branch extension
should be added to the k0-mer tree. Lines 26-28 read succes-
sive characters from the input sequence until the end of file
is reached and adds the resulting k-mers to the k0-mer tree if
their minimum k0 on k substring abundance is greater than or
equal to α, via the function PG-ADD2COUNT.

PG-Do()
1 if m→count≥ α then
2 n + +
3 while m→count≥ α and n < w do
4 b ← (b + 1) mod k
5 m ← m → suffix [PGbuffer[b]]
6 if m→count≥ then
7 n + +
8 if n = w then
9 PG-ADD-EXTENSION()

The purpose of the function PG-Do is to add a branch exten-
sion to the k0-mer tree to represent the k-mer in PGbuffer if its
minimum k0 on k substring abundance is greater than or equal
to α. At the beginning the pointer variable m points the leaf
node of the first k0-mer of the k-mer. Line 1 of function PG-Do
checks to see whether this k0-mer has a frequency greater than
or equal to α. If it does, line 2 increments the counter vari-
able n by one. Lines 3-7 scan the k-mer until a k0-mer with a
frequency less than α is encountered or until all k0-mers of the
k-mer are accounted for. Line 4 increments the index variable
b which keeps track of the last character of the k0-mer. Line 5
uses the suffix pointer of the leaf node of the current k0-mer

https://www.jscholaronline.org/
https://www.jscholaronline.org/journals/journal-of-cardiology-and-vascular-medicine/jhome.php

11

 JScholar Publishers

 J Bioinfo Comp Genom 2014 | Vol 1:101

and the index to the leaf node of the next k0-mer to move the
pointervariable m to the leaf node of the next k0-mer. Line 6
checks to see if the new k0-mer has a frequency greater than or
equal to α and if it does line 7 increments the counter variable
n. The condition n = w in line 8 is satisfied if and only if the
k-mer has a minimum k0 on k substring abundance greater
than orequal to α. Line 9 calls the function PG-Add-Extension
to add a branch extension to the k0-mer tree to represent the
k-mer if the condition in line 8 is satisfied.
PG-ADD-EXTENSION()
1 if e→extension = NIL then
2 e → extension ← new internal-branch-node[4]
3 x ← e → extension
4 p ← (a + 1) mod k
5 for i← 2 to k−k0− 1
6 r ← PGbuffer[p]]
7 if x[r] = NIL then
8 x[r] ← new internal-branch-node[4]
9 x ← x[r]
10 p ← (p + 1) mod k
11 r ← PGbuffer[p]]
12 if x[r] = NIL then
13 x[r] ← new external-branch-node[4]
14 x ← x[r]
15 p ← (p + 1) mod k
16 r ← PGbuffer[p]]
17 if x[r] = NIL then
18 x[r] ← new leaf-node
19 x[r] → extension ← NIL
20 x[r] → count ← 0
21 x[r] → suffix ← NIL
22 x[r] → rcomp ← PG-ADD-EXTENSION-REVERSE-
COMPLIMENT()
23 (x[r] →rcomp) →rcomp←x[r]
24 x[r] → count + +
25 (x[r] →rcomp) →count + +

The function PG-ADD-EXTENSION adds a branch extension
to the k0-mer tree for a new k-mer or increments the frequen-
cy count of a k-mer already having a branch extension in the
k0-mer tree. The branch extension is added at the leaf node of
the first k0-mer of the k-mer. Access to this leaf node isgained
by the pointer variable e. In line 1, the function checks to see
whether there is a branch extension from the leaf node. If the
leaf node has no branch extension, line 2 adds the first inter-
nal branch node of the extension. In line 3, the incremental
pointer variable x is pointed to the first internal branch node
of the extended branch node of the k-mer. The index variable
a holds the index of the last character of the first k0-mer of the
k-mer on PGbuffer. In line 4, the index variable p is assigned
the next index from a which is the index of the first character
of the k-mer in its branch extension. Lines 5-10 add new inter-
nal branch nodes to the extending branch if they do not exist.
Line 6 gets the next character from PGbuffer. Line 7 checks to
see if an internal branch node already exists for this character.
Line 8 adds anew internal branch node to the growing branch
if one does not already exist. Line 9 moves the pointer vari-
able x to the node pointed to by the character indexed by r in
the internal branch node. Line 10 moves the index variable p

to the next character on PGbuffer. Line 11 gets the character
pointed to by the index variable p. Line 12 checks to see if an
external branch node already exists for this character. If one
does not exist, line 13 adds a new external branch node. Line
14 moves the pointer variable x to the external branch node
pointed to by index r of the internal branch node. Line 15
moves the index variable p to the next character on PGbuffer
which must be the last character of the k-mer. Line 16 getsthis
character from PGbuffer. Line 17 checks to see if a leaf node
exists in the extended branch for the character. If one does
not exist lines 18-23 add a leaf node and sets its variables to
their initial values. Line 24 increments the frequency count of
the k-mer and line 25 increments the frequency count of its
reverse compliment.

PG-ADD-EXTENSION-REVERSE-COMPLIMEN()
1 x ← root
2 p ← (a + k − k0) mod k
3 for i← 1 to k0− 1
4 r ← compliment(PGbuffer[p])
5 x ← x[r]
6 p ← (p − 1) mod k
7 r ← compliment(PGbuffer[p])
8 if x[r] →extension = NIL then
9 x[r] → extension ← new internal-branch-node[4]
10 x ← x[r] → extension
11 p ← (p − 1) mod k
12 for i← 2 to k−k0− 1
13 r ← compliment(PGbuffer[p])
14 if x[r] = NIL then
15 x[r] ← new internal-branch-node[4]
16 x ← x[r]
17 p ← (p − 1) mod k
18 r ← compliment(PGbuffer[p])
19 if x[r] = NIL then
20 x[r] ← new external-branch-node[4]
21 x ← x[r]
22 p ← (p − 1) mod k
23 r ← compliment(PGbuffer[p])
24 if x[r] = NIL then
25 x[r] ← new leaf-node
26 x[r] → extension ← NIL
27 x[r] → count ← 0
28 x[r] → suffix ← NIL
29 x[r] → rcomp ← NIL
30 return x[r]
The function PG-Add-Extension-Reverse-Compliment adds
the reverse compliment of a k-mer extension to the k0-mer
tree. It is similar to the function PG-Add-Extension, however
it needs to trace down the k0-mer tree using the first k0 charac-
ters of the reverse compliment to locate the correct leaf node
to add the reverse compliment extension. This process is car-
ried out in lines 1-6. The function returns a pointer to the leaf
node of the extension.

PG-ADD2COUNT(v)

https://www.jscholaronline.org/
https://www.jscholaronline.org/journals/journal-of-cardiology-and-vascular-medicine/jhome.php

12

 JScholar Publishers

 J Bioinfo Comp Genom 2014 | Vol 1:101

1 q ← (q + 1) mod k
2 PGbuffer[q] ← v
3 if n = w then
4 a ← (a + 1) mod k
5 e ← e → suffix [PGbuffer[a]]
6 b ← (b + 1) mod k
7 m ← m → suffix [PGbuffer[b]]
8 n − −
9 PG-Do()
10 else if a = b then
11 a ← (a + 1) mod k
12 e ← e → suffix [PGbuffer[a]]
13 b ← (b + 1) mod k
14 m ← m → suffix [PGbuffer[b]]
15 PG-Do()
16 else
17 a ← (a + 1) mod k
18 e ← e → suffix [PGbuffer[a]]
19 n − −

The function PG-ADD2COUNT is the main function that
adds branch extensions to the k0-mer tree for qualifying k-
mers (i.e. k-mers with a minimum k0 on k substring abundance
greater than or equal to α) as new characters are read from the
input sequence. Line 1 of PG-ADD2COUNT moves the in-
dex variable q by one to the point on PGbuffer where the new
character, v, is inserted. Line 2 adds this character to PGbuffer.
In line 3, the algorithm checks to see if the most recent k-mer
was a qualifying k-mer. If this is the case, the algorithm only
needs to check if the last k0-mer of the current k-mer has a fre-
quency greater than or equal to α to be a qualifying k-mer. A
qualifying k-mer has w k0-mers with frequency greater than or
equal to α . The number of k0-mers in a k-mer with a frequency
greater than or equal to α is recorded in the variable n. When
the index variables a and b are equal fulfilling the condition
in line 10, it implies that n = 0 or that counting frequencies
of k0-mers in the k-mer must be done from the first k0-mer,
otherwise, when a≠b the algorithm executes lines 17-19 which
in effect discards the next n(< w) k-mers which are guaranteed
to have a minimum k0 on k substring abundance less than α.

5) Choi JH, G CH (2002) Analysis of common k-mers for
whole genome sequences using SSB-tree. Genome Inform 13:
30–41.
6) Marais G, Kingsford C (2011) A fast, lock-free approach for
efficient parallel counting of occurrences of k-mers. Bioinfor-
matics 27(6): 764–770.
7) Karp RM, Rabin MO (1987) Efficient randomized pattern-
matching algorithms. IBM J Res Dev 31(2): 249–260.
8) Hubbard TJP, Aken BL, Beal K, Ballester B, Caccamo M, et
al. (2007) Ensembl 2007. Nucleic Acids Res (Database issue)
35: 610–617.
9) Stoesser G, Baker W, van den Broek AE, Camon E, Hingamp
P, et al. (2000) The EMBL Nucleotide Sequence Database. Nu-
cleic Acids Res 28: 19–23.
10) Khil PP, Camerini-Otero RD (2005) Molecular Features
and Functional Constraints in the Evolu-tion of the Mamma-
lian X Chromosome. Critical Reviews in Biochemistry and
Molecular Biology 40(6): 313–330.

References
1) Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC
(2008) The Genomes On Line Database (GOLD) in 2007: sta-
tus of genomic and metagenomic projects and their associated
metadata. Nucleic Acids Res 36: 475–479.
2) Vincens P, Buffat L, André C, Chevrolat JP, Boisvieux JF, et
al. (1998) A strategy for finding regions of similarity in com-
plete genome sequences. Bioinformatics 14: 715–725.
3) Kurtz S, Schleiermacher C (1999) REPuter: Fast computa-
tion of maximal repeats in complete genomes. Bioinformatics
15(5): 426–427.
4) Paolo Ferragina , Roberto Grossi (1999) The string B-tree:
A new data structure for string search in external memory and
its applications. J Assoc Comput Mach 46: 236–280.

https://www.jscholaronline.org/
https://www.jscholaronline.org/journals/journal-of-cardiology-and-vascular-medicine/jhome.php
https://www.ncbi.nlm.nih.gov/pubmed/14571372
https://www.ncbi.nlm.nih.gov/pubmed/14571372
https://www.ncbi.nlm.nih.gov/pubmed/14571372
https://www.ncbi.nlm.nih.gov/pubmed/21217122
https://www.ncbi.nlm.nih.gov/pubmed/21217122
https://www.ncbi.nlm.nih.gov/pubmed/21217122
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.9502
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.9502
https://www.ncbi.nlm.nih.gov/pubmed/17148474
https://www.ncbi.nlm.nih.gov/pubmed/17148474
https://www.ncbi.nlm.nih.gov/pubmed/17148474
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102461/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102461/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102461/
https://www.ncbi.nlm.nih.gov/pubmed/16338684
https://www.ncbi.nlm.nih.gov/pubmed/16338684
https://www.ncbi.nlm.nih.gov/pubmed/16338684
https://www.ncbi.nlm.nih.gov/pubmed/16338684
https://www.ncbi.nlm.nih.gov/pubmed/17981842
https://www.ncbi.nlm.nih.gov/pubmed/17981842
https://www.ncbi.nlm.nih.gov/pubmed/17981842
https://www.ncbi.nlm.nih.gov/pubmed/17981842
https://www.ncbi.nlm.nih.gov/pubmed/9789097
https://www.ncbi.nlm.nih.gov/pubmed/9789097
https://www.ncbi.nlm.nih.gov/pubmed/9789097
https://www.ncbi.nlm.nih.gov/pubmed/10366664
https://www.ncbi.nlm.nih.gov/pubmed/10366664
https://www.ncbi.nlm.nih.gov/pubmed/10366664
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5939
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5939
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5939

