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Abstract

Objective: To investigate the molecular mechanisms and characteristics of acute myeloid leukemia (AML) and acute lym-

phoblastic leukemia (ALL).

Methods: Data for ALL and AML were collected from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas

(TCGA) databases. Significant gene expression difference was identified using DESeq2. Functional enrichment analysis util-

ized the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Gene Set Enrichment

Analysis (GSEA) was conducted to explore biological pathways. The Weighted Gene Co-expression Network Analysis

(WGCNA) identified co-expressed gene modules. Methylation analysis was performed using the MethylMix R package. Ma-

chine learning algorithms (GLM, RF, SVM, and XGB) were used for gene selection and predictive modeling of AML and

ALL.

Results: 51 downregulated and 50 upregulated genes were identified. Notably, 11 genes were upregulated and 4 genes were

downregulated in both AML and ALL. A protein-protein interaction network showed interactions among these genes, with

BML1 interacting with DNMT3A and MEF2C. GO analysis revealed biological processes and molecular functions associat-

ed with these genes, including B cell proliferation, DNA methylation, and regulation of gene expression. GSEA identified en-

riched gene sets related to memory CD8 T cells, B cells, myeloid cells, and lupus. Machine learning models achieved high ac-

curacy, with IGHM, FRZB, MGP, and ULK2 identified as important features for predicting AML. DNA methylation analy-



2

JScholar Publishers J Cancer Res Therap Oncol 2024 | Vol 12: 405

sis identified differentially methylated genes, while metabolite analysis revealed changes in metabolite abundance and en-

riched metabolic pathways.

Conclusion: Integrative omics provides significant insights into the understanding of disease mechanisms and potential bio-

markers for leukemia.
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Introduction

Acute myeloid leukemia (AML) is a malignancy of

the  stem  cell  precursors  of  the  myeloid  lineage  (red  blood

cells, platelets, and white blood cells other than B and T cell-

s) [1], which is characterized by the rapid growth of abnor-

mal  myeloid  cells,  which  are  immature  white  blood  cells

[2,3].  AML  exhibits  genetic  heterogeneity,  implying  that

there are variations in the genetic characteristics of the dis-

ease4. Acute lymphoblastic leukaemia (ALL), a malignant di-

sorder  of  lymphoid  progenitor  cells,  affects  both  children

and  adults  [4].  It  is  a  type  of  cancer  that  affects  the  white

blood  cells,  particularly  the  lymphocytes,  which  are  a  type

of  immune  cell  [5].  It  is  characterized  by  an  uncontrolled

growth of lymphoid cells that are arrested at an early stage

of  differentiation  [6,7].  It  has  the  ability  to  infiltrate  the

bone marrow,  bloodstream, and other  extramedullary sites

[8]. In the United States, the estimated incidence of ALL in

2014 was approximately 1.57 cases per 100,000 individuals,

with  approximately  5960  newly  diagnosed  cases  and  1470

deaths reported in 2018 [9-11].

Despite  substantial  advancements  in  diagnostic

methods  and  treatment  modalities,  these  leukemias  repre-

sent  substantial  challenges  for  the  area  of  oncology  [12].

AML and ALL are  associated with  complex  molecular  and

genetic alterations that contribute to their pathogenesis and

clinical  heterogeneity  [13].  Understanding  the  underlying

mechanisms and molecular characteristics of these diseases

is  crucial  for  improving  patient  outcomes  and  developing

targeted therapeutic approaches [14]. Transcriptomics [15],

metabolomics  [16],  and  epigenomics  [17],  among  other

high-throughput  technologies,  have  revolutionized  cancer

research in recent years by offering full molecular profiles of

tumors. These omics techniques have allowed for the discov-

ery of critical  molecular changes and processes involved in

leukemogenesis, allowing for the creation of new diagnostic

tools and treatment options.

The  integration  of  multiple  omics  data  sets  al-

lowed to comprehensively characterize the molecular lands-

cape of AML and establish a predictive model for AML clas-

sification.  By  leveraging  machine  learning  algorithms  and

utilizing  the  combined  information  from  transcriptomics,

metabolomics,  and  DNA  methylation  data,  we  aimed  to

compare the differences between AML and ALL, and devel-

op a robust and accurate model for the prediction of AML.

Methods

Data Collection

Data  for  ALL  were  collected  from  the  GSE79533

dataset  obtained  from  the  Gene  Expression  Omnibus

(GEO) database. Data for AML were collected from two da-

tasets,  namely  GSE26294  and  GSE110087,  and  obtained

from  the  GEO  database.  Leukemia  methylation  data  were

obtained  from  The  Cancer  Genome  Atlas  (TCGA)

database.  The  leukemia  methylation  data  of  patients  were

obtained by accessing the TCGA Data Portal website (http-

s://tcga.data.gov/). The selected subtypes of leukemia includ-

ed  AML.  Metabolomics  data  for  this  study  were  obtained

from  the  article  with  the  PubMed  identifier  (PMID:

34193978).  The  article  was  accessed  through  the  PubMed

database  (https://pubmed.ncbi.nlm.nih.gov/34193978/)  to

retrieve  the  relevant  metabolomics  dataset  [18].

Differential Expression Analysis

Following data preprocessing, the gene expression

profiles of the healthy population are designated as the con-

trol  group,  while  the  experimental  groups  consist  of  the

gene  expression  profile  sequences  of  ALL  and  AML  pa-
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tients. Differential expression analysis was to identify genes

with significant expression differences between the different

leukemia types. DESeq2 was employed for statistical analy-

sis and identification of differentially expressed genes.

Functional Enrichment Analysis

To gain insights  into the biological  functions and

pathways associated with the differentially expressed genes,

functional  enrichment  analysis  was  conducted.  The  Gene

Ontology (GO) terms and the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways were utilized for this analy-

sis.  R  packages  such  as  “clusterProfiler”  or  “Enrichr”  were

used to perform the enrichment analysis, applying statistical

tests such as the hypergeometric test or Fisher's exact test to

identify significantly enriched terms or pathways.

Gene Set Enrichment Analysis (GSEA)

In addition to the differential  expression analysis,

Gene  Set  Enrichment  Analysis  (GSEA)  was  conducted  to

further explore the biological pathways and functions associ-

ated with AML and ALL datasets.

Weighted  Gene  Co-expression  Network  Analysis
(WGCNA)

WGCNA  was  employed  to  construct  gene  co-ex-

pression  networks  and  identify  modules  of  co-expressed

genes.  The  analysis  was  conducted  using  the  R  software

package “WGCNA”. A pairwise correlation matrix was cal-

culated  using  the  preprocessed  gene  expression  data.  The

correlation  matrix  was  transformed into  an  adjacency  ma-

trix using a soft thresholding power parameter (β). The pow-

er  parameter  was  selected based on the  scale-free  topology

criterion to ensure a scale-free network structure. The adja-

cency matrix was transformed into a topological overlap ma-

trix  (TOM),  which  measures  the  interconnectedness  be-

tween  genes.  Hierarchical  clustering  was  performed  based

on  TOM  dissimilarity  to  identify  modules  of  co-expressed

genes.  The  dynamic  tree-cutting  algorithm  was  used  to

define  modules  based  on  a  predefined  minimum  module

size  and  a  specified  height  threshold.  The  module  eigen-

gene, defined as the first  principal component of the mod-

ule's gene expression profiles, was calculated. The module ei-

gengene  represents  the  overall  expression  pattern  within  a

module.

Network Visualization and Analysis

To  establish  the  transcriptional  network,  we  util-

ized Cytoscape 3.5.1, a powerful tool for visualizing biologi-

cal  networks.  In  order  to  gain  insights  into  the  network's

structure and properties, we employed a Cytoscape plug-in

specifically designed for network analysis. The transcription-

al network was constructed based on our dataset, and Cytos-

cape allowed us to visualize the network in a visually appeal-

ing and informative manner.

Analysis of methylated genes from TCGA

Differentially  methylated  genes  were  screened  by

comparing  cancer  tissues  and  normal  tissues,  using  the

“MethylMix”  R  package  with  a  false  discovery  rate  (FDR)

threshold of less than 0.05. The “MethylMix” R package was

employed  in  the  R  Project  for  Statistical  Computing  soft-

ware.  The  identified  genes  with  high  and  low  methylation

levels  underwent  bidirectional  hierarchical  clustering.  The

“pheatmap” R package was utilized to generate a differential

distribution  map  for  the  genes  with  the  most  significant

methylation differences.  This analysis  enabled the observa-

tion  of  the  methylation  degree  distribution  in  cancer  sam-

ples  compared to  normal  tissues.  Pearson's  correlation test

was conducted using the cor.test function in the R language

to determine the correlation between gene methylation de-

gree and corresponding gene expression. The filtering crite-

ria  for  this  analysis  were  a  correlation  coefficient  of  less

than  0.3  and  a  p-value  of  less  than  0.05.

Machine learning-based gene selection

Four different machine learning algorithms, name-

ly  Generalized Linear  Model  (GLM),  Random Forest  (RF),

Support Vector Machine (SVM), and XGBoost (XGB), were

employed  for  gene  selection.  Four  R  packages,  namely

“stats” for GLM, “randomForest” for RF, “e1071” for SVM,

and “xgboost” for XGB, were utilized to develop predictive

models for distinguishing between AML and ALL samples.
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Results

Differentially  expressed  genes  screening  and  analy-
sis of co-expression network

A  volcano  plot  is  a  type  of  scatter  plot  that  inte-

grates measures of statistical significance (such as p-values)

and magnitude of change from statistical tests, thereby facili-

tating  rapid  and  intuitive  identification  of  data  points

(genes, etc.) that exhibit significant and substantial changes.

In the volcano plot analysis, a total of 51 genes were found

to be downregulated and 50 genes were found to be upregu-

lated in the ALL samples compared to the control  samples

(Figure  1A  left  panel).  The  volcano  plot  of  AML  was  dis-

played  (Figure  1A  right  panel).  The  heatmap  analysis  re-

vealed distinct expression patterns among the differentially

expressed genes. A subset of genes exhibited higher expres-

sion levels in the AML/ALL samples compared to the com-

mon  samples,  indicated  by  the  red  color  in  the  heatmap.

Conversely,  another  subset  of  genes  showed  lower  expres-

sion  levels  in  the  AML/ALL  samples,  represented  by  the

blue  color  (Figure  1B).

This  study identified 11 genes  that  were  found to

be upregulated in both AML and ALL. These genes include:

DNMT3A,  CCDC198,  RNF125,  ERG,  HHAT,  ABHD17B,

BMI1,  PRKCI,  MYRIP,  ARMCX4,  and  MEF2C.  These

genes  exhibited  increased  expression  levels  in  both  AML

and ALL, suggesting their potential  involvement in the de-

velopment and progression of  these  types  of  leukemia.  Be-

sides,  it  was  discovered  that  four  genes  were  found  to  be

downregulated in both AML and ALL. These genes include

VOPP1, MARCO, LINC00472 and WARS1. A protein-pro-

tein  interaction  (PPI)  network  was  constructed  using  15

common genes (Figure 1C). Among these genes, BML1 was

found to have a shared interaction with DNMT3A and ME-

F2C (Figure 1D).

Association between genes and protein abundance

Several  genes,  namely  RNP25,  ERG,  RNF125,

PRKC1, WARS1, ABHD17B, and HHAT, were found to ex-

hibit a significant correlation with protein abundance. This

suggests  that  variations  in  the  expression  of  RNP25,  ERG,

RNF125, PRKC1, WARS1, ABHD17B, and HHAT may con-

tribute  to  changes  in  protein  levels  in  the  studied  context

(Figure 2).

Gene Ontology and Gene Set Enrichment Analysis

The GO analysis  of  the 15 common genes  identi-

fied  several  significant  biological  processes  and  molecular

functions associated with them. These genes were found to

be involved in  diverse  biological  processes,  including posi-

tive regulation of B cell proliferation, negative regulation of

gene expression through epigenetic mechanisms, DNA alky-

lation,  DNA  methylation,  regulation  of  gene  expression

through epigenetic processes, and DNA modification. Addi-

tionally,  they  exhibited  associations  with  cellular  compo-

nents such as heterochromatin, synaptic membranes, com-

pact  myelin,  and  postsynaptic  endosomes.  The  molecular

functions  of  these  genes  encompassed  activities  such  as  S-

methyltransferase,  protein  kinase  C,  and  ubiquitin-protein

transferase regulation.  These findings provide insights into

the potential roles of these genes in B cell proliferation, epi-

genetic regulation,  DNA modification,  and various cellular

activities.  Further  investigations  are  warranted  to  unravel

the  precise  mechanisms  and  functional  implications  of  th-

ese  genes  in  these  processes  (Figure  S1A).  Unfortunately,

the  study  did  not  find  any  KEGG  pathway  enrichment  in

Gene Set Enrichment. GSEA was performed to identify en-

riched gene sets.  The GSEA results revealed significant en-

richment of gene sets of the control group in the following

categories: GOLDRATH _ EFF _ VS _ MEMORY _ CD8 _

TCELL _ UP, GOLDRATH _ NAÏVE _ VS _ EFF _ CDBT-

CELL _ ON, GSE10325 _ BCELL _ VS _ MYELOID _ DN,

GSE10325  _  CD4  _  TCELL  _  VS  _  MYELOID  _  ON,

GSE10325 _ LUPUS _ BCELL _ VS _ LUPUS _ MYELOID

_ DN (Figure S1B).

In addition to the previously mentioned GSEA re-

sults,  the  analysis  further  identified  enriched  gene  sets  in

the “treat” group. These findings provide additional insights

into  the  functional  differences  and  regulatory  mechanisms

associated with the analyzed dataset. The enriched gene sets

discovered in this study include: GSE39556 _ CD8A _ DC _

VS _ NK _ CELL _ UP, GSE39556 _ UNTREATED _ VS _

3H  _  POLYIC  _  INJ  _  MOUSE  _  CD8A  DC  _  DN,

GSE39556  _  UNTREATED _  VS  _  3H _  POLYIC _  INJ  _

MOUSE  _  NK  _  CELL  _  DN,  GSE6269  _  E  _  COLIVS  _

STAPH _ AREUS _ INF _ PBMC _ UP, GSE9509 _ 10MIN
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_  VS  _  30MIN  _  LPS  _  STIM  _  IL10  _  KO  _

MACROPHAGE  _  DN  (Figure  S1B).

It was conducted to assess the enrichment of gene

sets in the control and treat groups, specifically focusing on

the KEGG pathway database. The GSEA results revealed sig-

nificant  enrichment  of  gene  sets  in  the  following  KEGG

pathways  such  as  GOLDRATHLEFF  _  VS  _  MEMORY-

CD8TCELL  _  JUP  and  GSE10325  _  BCELLVS-

MYELODDN (Figure S2A). Disease Ontology (DO) results

showed  that  a  significant  association  with  bone  cancer,

acute leukemia, sarcoma, lymphoblastic leukemia and mus-

culoskeletal system cancer (Figure S2B). The GO analysis re-

sults  for  AML  highlight  the  potential  dysregulation  of

metabolic  processes,  cellular  organization,  and  signaling

pathways  (Figure  S2C).

Weighted gene co-expression network analysis

The  WGCNA  analysis  provides  a  comprehensive

overview of the gene co-expression patterns and their rela-

tionships  with  phenotypic  traits.  In  this  study,  we  utilized

the  WGCNA  approach  to  investigate  the  relationships  be-

tween samples and traits in the analyzed dataset. The WGC-

NA  analysis  generated  a  sample  dendrogram  and  trait

heatmap, providing valuable insights into the clustering pat-

terns and associations among the control samples and treat

samples  of  AML  (Figure  3A).  To  ensure  the  creation  of  a

scale-free network, a soft threshold power of 17 was selected

(Figure  3B).  The  results  include  a  network  heatmap  plot

that  displayed  the  interactions  among  selected  genes  (Fig-

ure 3C). Significant correlations between module member-

ship  and  gene  significance  for  IPAH  in  the  grey  and

turquoise  modules  are  presented  in  Figure  3D.

Machine learning-based AML prediction model

Evidence  from  relevant  studies  indicates  that  the

prognosis  of  AML is  poorer[19],  hence our subsequent  re-

search focuses on the selection of biomarkers for AML. This

study employed four  machine  learning algorithms,  namely

GLM, RF, SVM, and XGB, to construct a predictive model

for  AML.  Using  these  machine  learning  approaches,  we

identified  four  genes,  namely  IGHM,  FRZB,  MGP,  and

ULK2,  as  the  most  important  features  for  predicting  AML

(Figure  4A).  Among the  machine  learning algorithms util-

ized  in  this  study,  the  XGB  model  demonstrated  superior

fitting  capabilities,  as  evidenced  by  its  exceptional  residual

performance  (Figure  4B).  The  analysis  of  area  under  the

curve (AUC) revealed varying levels of accuracy among the

machine learning models. The RF and XGB models exhibit-

ed a perfect accuracy with an AUC of 1.000, indicating flaw-

less classification performance. On the other hand, the SVM

and GLM demonstrated slightly lower accuracies with AUC

values  of  0.964.  Although  not  perfect,  these  models  still

achieved a high level of accuracy in distinguishing between

the classes (Figure 4C).

Gene Set Variation Analysis

The  genes  associated  with  AML  can  be  classified

into  two  distinct  clusters  (Figure  5A).  In  clusters  1  and  2,

there were notable differences in the expression levels of TR-

M40, EIF5A, and TUBB2A. Specifically, these genes exhibit-

ed higher expression levels in cluster 2 compared to cluster

1 (Figure 5B). The results of GSVA revealed noteworthy en-

richment of several gene sets in the analyzed dataset. These

findings shed light on the molecular functions, cellular com-

ponents, and biological processes that are prominently asso-

ciated with the studied dataset. The analysis identified signif-

icant  enrichment  of  the  gene  set  GOM-

F_CUPROUS_ION_BINDING,  indicating  a  heightened

affinity for binding to cuprous ions.  Additionally,  the gene

set GOMF_HISTONE_BINDING displayed notable enrich-

ment, suggesting a prevalent interaction with histones. Fur-

thermore,  the  cellular  component  GOCC_RNA_POLY-

MERASE_COMPLEX exhibited substantial enrichment, in-

dicating its prominence in the dataset. This finding suggests

the  involvement  of  RNA  polymerase  complexes  in  the

studied  biological  context.  Regarding  biological  processes,

the  gene  set  GOBP  _  NUCLEOTIDE  _  EXCISION  _  RE-

PAIR  showed  significant  enrichment,  indicating  its  pro-

nounced  involvement  in  the  repair  of  nucleotide  excision

(Figure 5C). The KEGG pathway “Aminoacyl Biosynthesis”

demonstrated a significant enrichment (P value < 0.05), in-

dicating  its  potential  involvement  in  the  observed  dataset.

Additionally,  the  pathways  “Base  Excision  Repair”,  “Nu-

cleotide  Excision  Repair”,  and  “Homologous  Recombina-

tion” displayed significant enrichment, suggesting their po-

tential  roles  in  DNA  repair  mechanisms  (P  value  <  0.01)

(Figure 5C).
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DNA  methylation  analysis  and  metabolite  expres-
sion  profiles

Through GO analysis, we found that the biological

function of AML enrichment is  related to methylation and

metabolism,  so  this  study  carried  out  subsequent  methyla-

tion and metabolism-related analysis. The analysis of DNA

methylation  patterns  revealed  several  genes  that  exhibited

differential methylation status in tumor samples. Specifical-

ly,  the  genes  TRM2,  GALNS,  ZNF321P,  and  FOZD7  were

found  to  be  highly  methylated  in  tumors.  On  the  other

hand, the genes, FZD5, PROZ, and BCL6, showed low levels

of methylation in tumor samples (Figure 6A). The volcano

plot was displayed in figure 6B and the PCA results revealed

a  substantial  dissimilarity  between  the  tumor  samples  and

the  experimental  samples  (Figure  6C).  In  the  context  of

AML  ,  the  analysis  of  metabolite  expression  profiles  re-

vealed differential abundance of Oleic acida , palmitic acid,

1-iodo-dodecanea, 2, 6,11-trimethyl-dodecanea, and 2,3- di-

hydroxypropyl exhibited higher levels of expression in sam-

ples compared to normal samples (Figure 6D). It was found

that these metabolites were enriched in the metabolic path-

ways of cysteine and methionine metabolism, as well as tau-

rine and hypotaurine metabolism (Figure 6E). The differen-

tial expression of metabolites in AML and ALL compared to

healthy  controls  were  investigated.  The  analysis  of  LogFC

(fold  change)  values  for  various  metabolites  was  visualized

using a heatmap, as shown in Figure 6F.

Discussion

In this study, we initially focused on 15 genes that

are  common  to  both  ALL  and  AML,  with  11  upregulated

and  4  downregulated.  These  genes  may  be  involved  in

shared biological processes or pathways related to the patho-

genesis of AML and ALL, including cell proliferation, apop-

tosis  regulation,  and  cell  signaling.  We  further  elucidated

gene  functions  and  pathways  through  GO,  KEGG,  and

GSEA  enrichment  analyses.

Additionally,  due  to  the  higher  incidence,  rapid

progression,  complex  treatment,  and  poorer  prognosis  of

AML, our subsequent research primarily involves data anal-

ysis focused on AML. Utilizing methods like WGCNA, a sys-

tems biology approach, we aim to understand gene relation-

ships  within  the  expression  matrix  comprehensively.  This

approach  helps  uncover  potential  biological  mechanisms

and  biomarkers,  providing  crucial  insights  for  further  in-

vestigation [20].

Furthermore,  we  constructed  a  machine  learning

model  for  the  prediction  of  AML  by  selecting  four  genes,

namely  IGHM,  FRZB,  MGP,  and  ULK2,  as  predictive  fea-

tures.  Immunoglobulin  Heavy  Constant  Mu  (IGHM)  is  a

critical component of the immune system and is a key sub-

type of immunoglobulin M (IgM) [21]. One study demons-

trated  the  presence  of  five  Ig  classes,  including  IGHM,  in

AML  [22].  Another  study  revealed  the  upregulation  of

IGHM expression in AML patients,  indicating its  potential

role  in  the  disease  [23].  Importantly,  a  significant  correla-

tion between IGHM expression and patient  survival,  along

with age  as  an additional  contributing factor  was  observed

[23].

Another gene with predictive value, FRZB, acts as

an antagonist  of  the Wnt signaling pathway,  which plays a

critical role in regulating various cellular processes, includ-

ing proliferation, differentiation, and apoptosis [24,25]. Dys-

regulation of the Wnt pathway has been implicated in vari-

ous  cancers,  including  hematological  malignancies  such  as

AML [26,27]. The significant difference in FRZB expression

between AML patients and the control group further high-

lights its potential as a biomarker for AML which suggested

its involvement in the disease's molecular mechanisms [28].

It  may  potentially  provide  insights  into  the  underlying

molecular  pathways  driving  leukemogenesis.

MGP,  an  extracellular  matrix  (ECM) protein,  has

been demonstrated to possess inhibitory effects on the min-

eralization and apoptosis of chondrocytes [29]. These obser-

vations imply that the crosstalk between leukemia cells and

the bone marrow (BM) stroma induces alterations in the tu-

mor  microenvironment,  promoting  an  undifferentiated

state  that  may  potentially  contribute  to  the  progression  of

the disease and the development of resistance to chemother-

apy [30]. Upregulation of MGP in AML has been observed

in  the  study  [31].  This  finding  highlights  the  potential  in-

volvement  of  MGP  in  the  pathogenesis  of  AML  and

suggests its potential role as a biomarker or therapeutic tar-

get for the disease.
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ULK1, also known as ATG1, is a serine/threonine

kinase that plays a pivotal role in the initiation of autopha-

gy, a highly conserved cellular process involved in the degra-

dation  and  recycling  of  damaged  or  unnecessary  cellular

components [32]. Growing evidence suggests that dysregu-

lated autophagy is a distinguishing feature of malignant dis-

orders and plays intricate roles in the initiation and advance-

ment  of  cancers,  as  well  as  their  resistance  to  treatment

[33-35].  In  addition  to  its  role  in  autophagy  initiation,

ULK1 has been implicated in various cellular processes, in-

cluding  cell  growth,  survival,  and  differentiation.  The  di-

verse functions of  numerous autophagy-related proteins in

cancer have been extensively examined [36]. Studies have re-

vealed that heightened expression levels of ULK1 are corre-

lated  with  unfavorable  prognosis  in  various  solid  tumors

[37,38]. Notably, it  was found that the expression of ULK1

in  primary  AML  samples  was  significantly  increased  com-

pared  to  healthy  control  samples  [39].  Besides,  a  growing

body of  literature  strongly  suggested  that  ULK1 is  a  viable

drug target for the treatment of AML [40].

The present study focused on the investigation of

stearic  acid  (SA)  and  its  potential  association  with  AML.

Stearic acid, a saturated fatty acid, is known for its involve-

ment in various cellular processes and has been implicated

in the pathogenesis of several diseases. In our study, we ob-

served  that  stearic  acid  displayed  a  statistically  significant

higher concentration in AML plasmas, consistent with previ-

ous findings reported in the literature [41]. These results are

in line with the growing body of evidence suggesting a po-

tential link between stearic acid and AML [42]. The elevated

levels  of  stearic  acid  in  AML plasmas  may indicate  its  role

as a biomarker or a potential contributing factor in the de-

velopment  and  progression  of  AML.  However,  further  in-

vestigations are required to elucidate the underlying mech-

anisms by which stearic acid influences AML pathogenesis.

Conclusion

The  comprehensive  analysis  of  AML  and  ALL

genes in this study has yielded valuable insights into the un-

derlying  mechanisms of  leukemia  and the  identification of

potential  biomarkers.  Furthermore,  the  application  of  ma-

chine  learning  techniques  has  successfully  identified  four

biomarkers  that  hold  promise  for  enhancing  the  diagnosis

and treatment of AML. These findings contribute to the un-

derstanding of leukemia pathogenesis and offer potential av-

enues for personalized medicine and improved patient out-

comes.

However,  the  clinical  relevance  of  these  findings

needs further exploration. Future research should focus on

developing targeted therapies that address the specific gene

alterations identified in this study. For instance, targeted in-

hibitors could be designed based on the molecular pathways

disrupted by these biomarkers. Additionally, the implemen-

tation of advanced genomic sequencing techniques could en-

able the detection of these gene changes in patients,  allow-

ing for early prediction of disease progression and tailoring

treatment  strategies  accordingly.  Moreover,  the  potential

correlation between these biomarkers and patient prognosis

merits  further  investigation.  A  longitudinal  study  tracking

patients with identified biomarker alterations could provide

insights  into their  prognostic  value and influence on treat-

ment outcomes.

It is also important to acknowledge the limitations

of  our  analysis.  While  our  study  identifies  potential  bio-

markers, it does not establish causation. The relationship be-

tween  gene  expression  levels  and  disease  manifestation  re-

quires further validation.  Experimental  approaches such as

gene knockdown or overexpression in relevant cellular mod-

els  could elucidate  the functional  impact  of  these genes on

leukemia  development.  Additionally,  in  vivo  studies  using

animal models may help confirm the role of these biomark-

ers in disease progression and therapeutic response. In con-

clusion,  the  findings  from this  study  pave  the  way  for  fur-

ther research into the clinical applicability of identified bio-

markers,  enhancing  our  understanding  of  leukemia  and

guiding  the  development  of  personalized  treatment  strate-

gies.
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