
©2024 e Authors. Published by the JScholar under the terms of the Crea-tive Com-
mons  Attribution  License  http://creativecommons.org/licenses/by/3.0/,  which  per-
mits unrestricted use, provided the original author and source are credited.

JScholar Publishers

Research Article Open Access

A Recursive Relationship in Lagrange Interpolating

Edmund A. Chadwick1* and Ali Hatam2*

1School of Computing, Science and Engineering, University of Salford, Salford, M5 4WT, United Kingdom
2Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology,
No. 350, Hafez Ave, Valiasr Square, Tehran, Iran

*Corresponding Author: Edmund A. Chadwick, School of Computing, Science and Engineering, University of Salford, Salford,
M5 4WT, United Kingdom, Tel: +44 (0)161 295 3259, E-mail: e.a.chadwick@salford.ac.uk

Received Date: May 04, 2024    Accepted Date: June 04, 2024    Published Date: June 07, 2024

Citation: Edmund A. Chadwick, Ali Hatam (2024) A Recursive Relationship in Lagrange Interpolating. J Comput Sci e
Dev 3: 1-4

Abstract

Lagrange interpolation, as described in many numerical analysis books, has a y that by adding a new data, all com-
putations must be recalculated from the beginning. A very simple method that comes here shows that there is no needed to
do the calculations from the beginning, but as well as the interpolating by Newton’s divided , all former computa-
tions without any changes, can be extended by adding new data.
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Introduction

m 1.1 m 3.2 in [2]) If x0, x1, ..., xn

are n+ 1 distinct numbers and f is a function whose values

are given at these numbers, then a unique polynomial Pn(x)

of degree at most n exists with f(xk) = Pn(xk), for each k = 0,

1, ..., n

where for each k = 0, 1, ..., n,

As  it’s  seen  in  both  formulas  (1)  and  (2),  all  La-

grange polynomials Ln,k are polynomials of degree n and if a

point (xn+1, f(xn+1)) (provided xn+1 s from xi , i = 0, 1, ... ,
n) to be added to the previous data, for producing Ln+1,k and

therefore Pn+1 , previous Ln,k are useless and all former com-
putations must be recalculated. s is because the numera-

tor and denominator of all Ln,k’s are involving with all d
data and if any new dada to be added, for producing new

Ln+1,k, in all factors in the denominator of Ln,k, the number xk

must be replaced with the new data xk+1 and this means pre-
vious results in denominator can not be extended and all
must be completely recalculated, and this is the lack of tradi-
tional Lagrange interpolating. Fortunately, interpolating by
Newton’s method has no this y because of New-
ton’s interpolating is based on the following recursive for-
mula (3),

for more analysis see [1,3].
We now introduce the following formula (4),

to modify traditional Lagrange’s interpolating and
equipped  this  method  with  a  recursive  formula,  such  that
by adding new data, for extending to higher degree interpo-
lation polynomial, all old computations can be used.
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3 Computer Algorithm

Read (x0,y0), (x1,y1); % E1

| If x0=x1 output "Error in Data" ; % E2

| stop.

| otherwise;

| P(1)(x)=((x-x1)/(x0-x1))*y0 + ((x-x0)/(x1-x0))*y1; % E3

| end If;

n=1;

x(0)=x0;

x(1)=x1;

L(0)(x)=1;

| 1 Read (x,y);

| n=n+1;

| x(n)=x;

| y(n)=y;

| | Do I=0 to n-1;

| | If x(n)=x(I) output "Error in Data"; % E4

| | stop.

| | otherwise;

| | L(I+1)(x)=((x-x(I))/(x(n)-x(I)))*L(I)(x); % E5

| | end Do;

| P(n)(x)=L(n)(x) * (y(n)-P(n-1)(x(n))) + P(n-1)(x); % E6

| Continue 1;

output P(n)(x); % E7

End Program.

Explanations:

E1: at least two points are necessary for interpolating

E2: checking distinctness of data

E3: making P_1(x)

E4: checking distinctness of data

E5: coefficient of interpolating polynomial

E6: making desirable interpolating polynomial (applying recursive formula)

E7: desired interpolating polynomial of all data

4

Computer Algorithm
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Conclusion

e  heart  of  this  article  is g  a  recurrence
formula for Lagrange interpolating polynomials rather than
calculating  individual  formula  for  each  polynomial.
method can also be extended for interpolating polynomials
of two variable or multivariate as well.
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