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Abstract

The vulnerable atherosclerotic plaque plays a major role in acute coronary artery syndrome, which is a major cause of death 
in the United States. However, the pathobiology of the vulnerable atherosclerotic plaque is not completely understood. A 
better understanding of the mechanisms of how the atherosclerotic plaque forms and becomes vulnerable will allow us to 
devise therapies to treat this lesion, which will help prevent acute coronary artery syndrome. This paper therefore, discusses 
new technology and translational biology that allows better insight into the atherosclerotic vulnerable plaque.
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Each year, there are 785,000 new and 500,000 recurring in-
cidences of acute coronary syndrome, accounting for greater 
than 50% of all cardiovascular deaths. It is estimated that an 
additional 195,000 silent MIs occur each year. This would 
suggest that >20% of first and recurrent MIs are silent [1]. 
The difficulty with treating this disease effectively lies in the 
poor understanding of plaque rupture biology. In most cases, 
fibrous cap rupture and ensuing thrombus formation signals 
the initial event. This brief review will summarize new tech-
nologies and information on translational biology regarding 
the pathology of the vulnerable plaque. 

The vulnerable plaque has four major areas of concern. The 
first area is the thin fibrous cap that overlies the necrotic core, 
as rupture of this cap is thought to be the primary cause of 
acute coronary syndrome. Second, the vulnerable plaque 
positively remodels with a rich vasa-vasorum containing a 
necrotic lipid core and increased macrophage numbers [2-4]. 

The third area of concern is the role of inflammation, smooth 
muscle cell apoptosis, matrix metalloproteinases, macrophag-
es and other leukocytes, neovascularization, and intraplaque 
hemorrhage in advanced coronary lesions [5,6]. Lastly, rup-
tures occurring in the center of the cap account for approxi-
mately 37% of events. Macrophages usually concentrate at the 
corners of plaques and are sparse in the center of the cap. In 

Figure 1: Bone morphogenetic protein (BMP) is controlled by important fac-
tors related to diabetes.  Diabetes patients have increased vascular calcifica-
tion.
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addition, the densest collagen structure is typically at the cap 
center [7].

Clinical imaging studies have demonstrated three major fac-
tors associated with plaque rupture. In the PROSPECT trial, 
investigators prospectively studied 697 patients with Acute 
Coronary Syndrome by catheter and Intravascular Ultrasound 
(IVUS) imaging evaluations. In this trial, major adverse events 
was defined as composite of cardiac death, cardiac arrest, MI, 
ACS, revascularization by CABG, PCI, or rehospitalization 
by CABG or PCI or rehospitalization for angina. Culprit le-
sion was defined as a lesion that appeared under stress testing 
that associated with myocardial ischemia defined by changes 
in electrocardiogram. They reported a 20% cumulative rate of 
major adverse events at 3 years. However, surprisingly at fol-
low up events from the culprit lesions were 12.9% and non-

Figure 2:  At 3 year follow up in the PROSPECT trial, events from the culprit 
lesions were 12.9% and from non-culprit lesions were 11.6% (p=not signifi-
cantly different). This figure graphically illustrates the progression of athero-
sclerosis over time, leading in many patients to a myocardial infarction with 
ventricular damage.  In the next 3 years, the less high grade lesions (non cul-
prit) have a CV event rate very similar to the original culprit lesion.

Multivariate analysis of the non-culprit lesions identified three 
characteristics that were significantly associated with future 
adverse events. Non-culprit lesions that were associated with 
recurrent events had a plaque burden of >70%, a minimal lu-
minal area of <4 mm2, and were classified as thin cap fibroath-
eromas by radiofrequency IVUS imaging. At the patient level, 
insulin-requiring diabetes was the strongest predictor of major 
adverse events associated with non-culprit lesions [21].

Figure 3: This Infraredx near infrared spectroscopy with intravascular ultra-
sound (IVUS) illustrates an intermediate lesion with a large lipid core. 

New research in imaging and structural evaluation of the vul-
nerable plaque has made important advances over the last 5 
years. The human use of IVUS, Optical Coherence Tomogra-
phy (OCT), and Near Infrared Spectroscopy (NIRS) has ush-
ered in a new exciting era of investigations on the vulnerable 
plaque and vascular aging [8,9]. In addition, biomechanical re-
search has contributed important 3D imaging of plaque geom-
etry, circumferential, and fluid induced shear stress informa-
tion [10-14]. One of the most exciting new areas in vulnerable 
plaque research has been the identification of microcalcifica-
tions in the vulnerable plaque [15,16]. Microcalcifications can 
be seen with OCT in human coronary plaques and have been 
correlated with microCT images and autopsy findings [17,18]. 

Figure 4: An optical coherence tomography (OCT) image illustrating small 
microcalcifications  in the thin plaque cap in a mild to intermediate coronary 
lesion.  

The role of microcalcifications on plaque vulnerability has 
most recently been studied by Vengrenyuk [19], Maldonado 
[20], and Kelly-Arnold [18]. Maldonado et al [20] studied 92 
major coronary arteries with microCT at a resolution of 6.7 
microns [20]. They found that 85% of microcalcifications were 
<50 microns, mostly in lipid pools. Only 0.2% of the micro-
calcifications were in the fibrous cap proper. In studies by 
Kelly-Arnold et al. [18], 66 human coronary fibro-atheromas, 
defined as thickened vessel walls with visible lipid pool and ne-
crotic core, were studied by microCT scanning. They were de-
tected by 2.1- micron high resolution microCT scanning in 92 
human coronary arteries sections obtained from the National 
Disease Research Interchange. Their results found that most 
microcalcifications were <15 micron and were invisible at 6.7 
micron resolution. They concluded that nearly all fibrous caps 
have microcalcifications with only a small subset having the 
potential to rupture. In contrast, earlier studies by Vengrenyuk 
et al. [19] suggested that microcalcifications were derived from 
apoptotic macrophages in the cap and necrotic core producing 
a possible vulnerable cap. They concluded that for thin caps 
without microcalcifications, the rupture threshold cap thick-
ness would be around 30 microns. This is much less than the 
reported 65 microns from earlier research. More research is 
needed in this important area of the vulnerable plaque patho-
biology.
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Recent developments in molecular biology have shed im-
portant light on the mechanisms of the development of vas-
cular calcification. Data from Yao et al. [22] reports that the 
endothelium can produce osteoprogenitor cells that have the 
potential to increase vascular calcification. Increased vascu-
lar calcification is seen in patients with diabetes and disorders 
with enhanced bone morphogenetic protein levels. Both con-
tribute osteoprogenitor cells to the vascular calcification [22]. 
Diseases and drugs that impact Bone Morphogenetic Protein 
(BMP) levels would alter osteoprogenitor cells that are linked 
to vascular calcification seen with vascular aging and increased 
plaque rupture risk. Changes in the level of osteoprogenitor 
cell activity may affect the levels of microcalcifications found 
in the vulnerable plaque. 

In summary, the vulnerable plaque continues to be an elu-
sive target for the treatment of acute coronary syndrome, in 
part due to an insufficient understanding of the mechanisms 
underlying the development and rupture of the vulnerable 
plaque. Clinically the best choices for reducing cardiovascular 
events continue to be lifestyle changes and risk factor modifi-
cation with therapies such as statins that have been shown to 
decrease future cardiovascular events. 
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