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Abstract

Based on statistical analysis of generating the Gaussian-distributed pseudorandom noise data being come out under the 
experimental X-ray diffraction tomography technique, the noise-filtering issue of the 2D image patterns is analyzed. The 
noisy 2D image data of the crystal-lattice point defect is numerically simulated by using the random number generator 
algorithm. Accordingly, to denoising, one applies the additive acquisition network of the 2D noisy data. The special at-
tention is paid for cumulative denoising the 2D image data governed by the goodness-of-fit parameter of the recovery of 
the nanoscale point defect in a crystal. In terms of the signal-to-noise ratio, improving the quality of the 2D image pattern 
denoised by fusing a series of the 2D images into one has been approved.
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Introduction

 Substantial success in non-destructive studying the 
crystal-lattice defects properties is deeply connected with ap-
plying the high-resolution X-ray diffractometry (XRD), the 
so-called reciprocal- space mapping (RSM) method [1-4] and 
relevant X-ray diffraction technique (XRD) technique [5- 9] 
(see references in [5-9] as well). Schematic setup of the XRDT is 
shown in Fig. 1. The key elements of the XRDT method are the 

precision rotation of the sample around the diffraction vector h 
(angle Φ in Fig. 1), as well as the noise filtering to the reference 
2D imaging pattern data recorded via the CCD detector (D) with 
the acquisition system AS/PC (Fig. 1). The latter collect the 2D 
image pictures (IPs) information recorded in the reciprocal and 
real space, respectively, and it is utilized to decode the 2D IP data 
aiming the quantitative diagnostics of nanoscaled bulk materials. 
Using the direct methods to decode the experimental X-ray IPs 
data, recovering of elastic displacement fields around the crys-
tal-lattice defects has been carried out in [5-9]. 

Figure 1. Schematic setup of the XRDT. Sample is rotated around the diffraction vector h || sin0X; Φ is the rotation angle, θ is the 

Bragg angle. D is the CCD detector; AS/PC is the acquisition system for accumulating of the 2D IP frames

 In practice, remaining in the modern issues frame of 
the materials science, one can state that plausible decoding the 
crystal-lattice-defects from the experimental X-ray IPs data de-
pends on the two factors. The first is the mathematically correct 
solution of the inverse issue of the X-ray diffraction tomogra-
phy. The second is obtaining the experimental data with good 
accuracy, if possible, excluding and or minimizing experimen-
tal measurement errors. In other words, it is important to use 
experimental data with an accuracy controlled. This means that 
for the experimental measurement it is necessary to achieve a 
level of noise that would allow reliable, at a level of significance 
not more than 10%, recognizing the elements of the image. Since 
these elements can have different sizes and shapes, it is difficult to 

give a general maximum limit for the noise level in all cases, we 
can only say that it should not exceed 10-20%. In [9], the inverse 
problem of the X- ray diffraction tomography has been discussed 
in the case of the simulated noisy 2D IPs data related to the Cou-
lomb-types point defect in a crystal. For this, as the recovery cri-
terion, the goodness-of- fit parameter (CP) strongly depending 
on the noise level of the 2D IPs data has been introduced.

 In [10], authors have undertaken the endeavour to fil-
tering the simulated noisy 2D IPs data for the Coulomb-types 
point defect in a crystal. It has been shown that the governed fil-
ter applied to the initial noise-levels of the order 3-10 % IPs data 
yields the noise levels reduction of the order of their values at 
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least, and significantly decreases the goodness-of-fit CPs values 
of the optimization procedure.

 Noteworthy is the fact, in [11-13] have been pointed out 
a technical capacity of filtering digital signals, and quantifying 
the signal and noise components to improve the signal-to-noise 
ratio. In [12] was shown how the noise reduction by the signals 
average can be achieved with acquisition system of the noise 
signal data. Recently [14] have shown that convolutional neural 
networks can be a powerful tool to remove noise from recon-
structed 2D images, Concerning the noise 2D IPs, hereafter the 
term "filtering" does mean the procedure, which leads to an im-
provement in the signal- to-noise ratio independent of whether 
the filtering algorithms are used at the post-processing stage of 
collected images or statistical average by combining a set of the 
2D IP frames.

 The 2D IPs data have been numerically simulated in 
the case of the incident σ-polarized plane–wave X-radiation. As 
is known, the Gaussian noise satisfies to the probability density 
function (PDF)

where the dispersion r.m.s. is nothing else the noise level σ.There 
are some works [15-17], in which the powerful PC algorithms 
have been employed for modeling the noise 2D IPs data collected 
by the CCD area detectors in the XRD technique. All the above 
PC random-noise-generation algorithms are based on the in-
verse transform

Here Φ(y) is the PDF integral. Function Φ(y) alternates with-
in the interval U(0, 1) with the r.m.s. Λ equal to unity; n is the 
current 2D IP-frame number, n = {1, 2, …, N}, N is the number 
of the 2D IP-frames; to be specific, the number N is large in a 
statistical sense.

 Due to the inverse transform (2), the pseudorandom 
number set {yk} in some interval of U(−𝛥, 𝛥) can be generated 
according into some reasonable looking Gaussian function. The 
integer k is the pixel number of one 2D IP-frame, k = {1, 2, K}, K 
is the number of pixels in one 2D IP-frame. Under the Central 
Limit Theorem (CLT) of statistics, in the limit when N ≡ (𝑁 × 𝐾) 
→∞, the PDF 𝐺𝑁 (𝑦𝑘) tends to the Gaussian distribution G(yk

),

(3)

 Gaussian noise, unlike Poisson’s noise, can already be 
considered to be an admixture in the reference data.

 In the present study, for simplicity, without loss of gen-
erality, we will treat an issue of the 2D noise IPs data frames in 
the case of frame- and pixel-independent random noise.

 Appropriately, one assumes that the noisy n-th IP frame 
is determined by the relationship

 Before proceeding further, it is worth to notice that there 
are methods to generate the Gaussian pseudorandom numbers, 
which do not rely on inverse transform (2). For example, good 
statistical properties have the maximal entropy Wallace’s method 
[18] and the Wolfram Mathematica program package [19]. To 
generate the Gaussian pseudorandom numbers {yk}, we imple-
mented both the method based on the inverse transform (2) (see 
[15-17]) and the Wolfram Mathematica program package [19] 
when they fit our purposes. Following a general idea of reducing 
the signal-to-noise ratio due to the signal accumulation with the 
subsequent averaging [11-13], one considers the average of the 
noise {𝐼(𝑦𝑘, 𝑛)} supposing that the regular IP-component 𝐼0(𝑘, 𝑛) 
does not depend on the frame number n. Then, by using equa-
tion (4) averaged over N images, we have 

and according to a general statistics concept, the noise part in the 
averaged frame 〈{𝐼(𝑦𝑘, 𝑛)〉𝑁 decreases proportionally to 

 In this paper, we will learn how the Gaussian statistics 
works on an example of the XRDT noise 2D IPs of the crystal lat-
tice Coulomb-types defect with the 3D displacement field func-
tion  𝑓𝐶𝑡𝑝𝑑(𝐫 − 𝐫0) under conditions of the X-ray diffraction to-
mography (XRDT), as described above. Special attention is paid 
for cumulative reducing of the noise distortion of the simulated 
XRDT 2D IPs onto the effective recovery of the 3D displacement 
field function 𝑓𝐶𝑡𝑝𝑑(𝐫 − 𝐫0) (cf. [9]).

(2)

(1)

(4)

(5)

∼

∼
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 Hereafter, without losing a generality, the denoising 
problem will be considered on the example of the Gaussian noisy 
image pictures that is commonly taken place in the case of the 
X-ray diffraction tomography (XRDT). In this paper, denoising 
of the reference XRDT data is discussed and analyzed in the case 
of the 2D noisy IPs of spherical inclusion incorporated within a 
single crystal Si(111);

the diffraction vector h = [220], an incident linear-polarized X-
ray radiation with wavelength λ = 0.0709 nm, the Bragg angle θB 
= 10.65°, extinction length 𝛬 = 36.287 μm. The spherical inclu-
sion  is considered as the Coulomb-types point defect located at 
a point r0 with the 3D displacement field  function 

 Hereafter, the sample thickness T is chosen to be equal 
to the X-ray extinction length 𝛬, each the simulated reference 
2D IP frame of the square size = 𝛬2 contains of 3721 pixels. Ac-
cordingly, the linear pixel size is about 0.6 μm. Note that the lin-
ear spatial resolution of the X-ray synchrotron 2-20 keV hybrid 
pixel detectors used in the X-ray diffraction tomography is of the 
order of about 1μm. The goal of the study is to denoise the refer-
ence 2D Gaussian noise-type IPs data and to improve the qual-
ity of the digital reconstruction of the 3D function 𝑓𝐶𝑡𝑝𝑑(𝐫 − 𝐫0)
digitally recovered.

 In spite of the fact that the noise in the images obtained 
with CCD detectors has a Poisson distribution by nature, at high 
counting statistics the noise distribution is close to the Gaussian 
one, the case of which we will consider.

Random generation algorithm for the generating the 
Gaussian pseudorandom numbers

 The computer algorithm code for generating the 
Gaussian pseudorandom numbers is employed according to the 
schemes, details of which may be found in the [15-19]. The results 
of the noise generation have been approved by applying a num-
ber of statistics criteria including the corresponding test-statistics 
values listed in Table 1 (cf. The R-Project for Statistical Comput-
ing. https://www.r-project.org and [20-27]). The p-value is widely 
used for testing the statistics hypothesis, specifically: to verify the 
null hypothesis (Statistics Central Limit Theorem – SCLT) that the 
pseudorandom numbers generated satisfy to the Gaussian distri-
bution. If some model (e.g., the null hypothesis) has been chosen, 
one needs to establish some significance-level α of the test statis-
tics as the cutoff one. In the statistics data analysis, the conven-
tional cutoff value α is taken as α = 0.05. Should the p-value of 
the test-statistics is less than 0.05, it means that the pseudoran-
dom number data are inconsistent with the null hypothesis and 
therefore, the null hypothesis has to be rejected. Typically, the null 
hypothesis is rejected if p < 0.05 and accepted for p > 0.05. 

events number, 
961× 10N

Mean,
× 1033

dispersion, 
r.m.s.

test-statistics values of P, D , A, W & the corresponding (p-values)

Pearson’s, P, p Kolmogorov- 
Smirnov’s, D, p

Andreson- Dar-
ling’s, A, p

Cramer - von 
Mises’s, W, p

0 35 1.0476 39.68, 0.035335, 0.17516, 0.024519,
(0.08931) (0.1645) (0.9244) (0.916)

1 4.1 1.0164 82.832, 0.0077965, 0.59117, 0.096006,
(0.3043) (0.5776) (0.12311) (0.1277)

2 -0.89 1.0010 180.51, 0.0017697, 0.39168, 0.060894,
(0.8085) (0.9128) (0.3791) (0.3682)

3 0.44 1.0006 510.41, 0.0007554, 0.34016, 0.041393,
(0.3639) (0.618) (0.49781) (0.6561)

4 -0.11 1.0001 1215.2, 0.0002507, 0.34303, 0.056874,
(0.8077) (0.5559) (0.4904) (0.416)

Table 1. Test-statistics for generating pseudorandom numbers by using the RNGA algorithm 

code along with the tabulated PDF integral. The program R-package has been used for the various 

test- statistics models (The R Project for Statistical Computing. https://www.r-project.org)

https://www.r-project.org/
https://www.r-project.org/
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 The generated Gaussian pseudorandom numbers has 
been successfully passed through Pearson’s test-statistics, see Ta-
ble 2 [21]. Indeed, in all the cases the evaluated p-values exceed 
the level cutoff α =0.05. At the same time, it should be mentioned 
that the PC algorithm code elaborated is rather fast and takes the 
1-2 sec to terminate the PC calculation procedure on the Intel 
Core i7-7820X processor.

 Pearson's χ2 test-statistics approves a null hypothesis by 
declaring whether the frequency distribution of the generated 
pseudorandom numbers is in a good consistence with the Gauss-
ian distribution. The well-known χK

2-cumulative test-statistics 
function is determined as

(6)

where the GN(yk) is the generated frequency distribution due to 
the total event number N and the G(yk) is the pure Gaussian dis-
tribution function; (K-1) is the intervals number of the frequen-
cy distribution histogram (see Supplementary part for details).

 Furthermore, the χK
2 -cumulative test-statistics may 

be used to evaluate the value p, which allows to formulate the 
“goodness-of-fit" criterion for generating the Gaussian pseudo-
random numbers by the frame of stochastic processes. And for 
which, the freedom-degrees number is equal to the total events 
number N minus the reduction coefficient p = s+1, where s is the 
number used in fitting the desired frequency distribution, for the 
Gaussian distribution G(yK

) s=2.

n 2 3

MÑ[yK] 0.00082090 0.00060373

P 82.832 180.51

Table 2. Erwartungwerten noise values MÑ[yK] and Pearson's 

test-statistics P. String-number ñ s equal to 961 × 10n, n = {2, 3}.

Simulation and analysis of the noise-contamination-prone 
2D IPs

 Nowadays, as is shown in Fig.1, the XRDT technique 
allows one to collect and proceed the 2D IPs data {𝐼(𝑦𝑘, 𝑛)} in a 
relevant way that contain the {𝑦𝑘|𝑛}-ensemble data. Indeed, each 
the nth frame 2D IP is nothing else the linear hybridizing of both 
the regular (none noise) and noise-contaminated components 
according to equation (5).

 In terms of equation (5), the noise 2D IP frames have 
been calculated by using the Wolfram Mathematica program 
package [19] and the random number generator algorithm 
(RNGA, details of which are given in [15-17]), respectively. By 
using these algorithms for various string numbers of stochastic 
events, some distributions 𝐺Ñ(𝑦𝑘) of pseudorandom numbers 
{yk

} have been calculated for the integer ñ = 𝐾 × 𝑁, K=961 pixels 
per image, N is the number of the 2D IP-frames under consid-
eration. The corresponding results are presented in Fig. 2. From 
Fig. 2, it follows that for N= 103 the generated distribution GN

(yk
) 

tends to the Gaussian distribution G(yk
) in a good agreement 

with the SCLT up to high accuracy. 

 To be specific, to highlight a goal of the present study, 
we are confined ourselves by consideration of the XRDT noise 
2D IP-frames referred to the crystal-lattice Coulomb-types de-
fect when rotation angle Φ = 0º. In the case of Φ = 0º, the nu-
merically simulated 2D IP-frames for various noise levels σ are 
depicted in Figs. 3a-c, particularly: (a) σ=0, (b) σ=0.001, (c) σ 
=0.001, respectively. Accordingly, by using the Wolfram Mathe-
matica program package [19] for generating the pseudorandom 
numbers{yk

}, the straightforward procedure to averaging the 
noise-contamination- prone 2D IP frames has been carried out. 
For comparison, the corresponding no averaged 2D IP- frame 
with K= 961 and N = unity and the averaged 2D IP-frame with 
K= 961 and N=961 have been simulated. The corresponding re-
sults are shown in Fig.4, 4a, 4b, the noise level σ=0.001. 

 Let us introduce into consideration the Erwartun-
gwert noise gain (NoiseGain) determined as the ratio of aver-

age Mean N[yk] =  MeanN=1 [yk] to average Meanñ[yk]= 

https://doi.org/10.1214%2Faoms%2F1177729437
https://doi.org/10.1214%2Faoms%2F1177729437
https://doi.org/10.1214%2Faoms%2F1177729437
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Figure 2: Generating the pseudorandom numbers y (red curve) vs. the normal distribution 

PDF (blue curve) for the string numbers      N = 961 × 10n for n equal to: a) 2, b) 3

Figure 3. The XRDT 2D IPs with noise level σ equal to: (a) 0, (b) 0.01 (c) 0.016. The sample rotation angle Φ = 0°. The total grid sizes in the 

‘own’ crystal coordinate system (X, Y, Z) are equal to (61, 61, 21). Sizes of the sample voxel {ΔX, ΔY, ΔZ}: ΔX= π/30, ΔY= π/30, ΔZ= π/20, 

respectively. The vector P(true) of the 3D Coulomb-type point defect displacement function fCtpd(r-r0) assumed to be {1.50, 0.50, 1.80}

∼
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 Accordingly, in our calculations 𝑀𝑒𝑎𝑛961 = −0.0226414 
and 𝑀𝑒𝑎𝑛961×961 = −0.000911784 and thus, one obtains Noise 
Gain = 24.832 (remind that according to the SCLT the Erwar-
tungwert noise values of MeanÑ[𝑦𝑘]  tends to zero for ñ→ ∞). In 
the case of the values N = 961 × 10n (n = 0, 1, 2), one applies 
the random number generator algorithm [15-17] (RNGA) algo-
rithm package for generating the noise-contamination-prone 2D 
IP- frames. The corresponding Erwartungwert noise values of 
𝑀𝑒𝑎𝑛Ñ[𝑦𝑘] are listed in Table 2, they allow one to state that the 
procedure of averaging some noise 2D IP-frames can be effective 
tool to achieve the statistical noise filtering of the initial XRDT 
2D IPs. The noise-filtered 2D IPs data, which should be incorpo-
rated in the optimization recovery procedure allow to obtaining 
more stringent information about the nanoscaled crystal-lattice 
defects. Loosely speaking, the use of a large number of the noise 
2D IP frames opens a way to enhance the precision of the XRDT 
technique.

 To illustrate how equation (5) works in the case of the 
noise-contamination-prone 2D IPs, the calculated results of the 

Figure 4. Statistical quit noise-filtering of the 2D IP frames. Noise level σ=0.01. Rotation angle Φ= 0°. K is the 2D IP-frame 

pixel number, K= 31 × 31. N is the 2D IP-frames number. (a) no averaged noise 2D IP-frame, the string number, ñ=K,  K=961, 

N=1; (b) the averaged noise 2D IP-frame in terms of equation (5), the string number N = KXN, K=961, N = 961. The grid 

sizes in the ‘own’ crystal coordinate system (X, Y, Z) are equal to (31, 31, 21). The grid voxel sizes {ΔX, ΔY, ΔZ}: ΔX= π/30, 

ΔY= π/30, ΔZ= π/20. Wolfram program code [19] has been applied for generating the pseudorandom numbers{y
k
}

3D function 𝑓𝐶𝑡𝑝𝑑(𝐫 − 𝐫0)  recovery are listed in Table 3. Having 
an aim to minimize the XRDT 2D IPs target function, all the 
calculations have been carried out by using the combined iter-
ative quasi-Newton-Levenberg-Marquardt – Simulated Anneal-
ing algorithm (qNLMSA) (cf. [9]). All the calculation have been 
calculated for total grid crystal sizes along to the dimensionless 
coordinates (X, Y, Z)-coordinates are equal to (61, 61, 21); the 
voxel sizes along to (X, Y, Z)-coordinates are equal to: ΔX= π/30, 
ΔY= π/30 and ΔZ= π/20 in the units of Δ/π, the dimensionless 
thickness T of the sample Si(111) is chosen to be equal to π. From 
Table 3 it follows an assertion that optimized processing of the 
noise 2D IPs in terms of equations (5), (6) allows to decode the 
noise XRDT 2D IPs data up to the enhancing accuracy.

 On the other hand, based on the calculation results list-
ed in Table 3, one concludes that the averaging technique pro-
posed is approved to work and improve a signal-to-noise ratio of 
the XRDT 2D IPs observed.

∼

∼
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Noise  
level, %

Number of av-
eraged frames

𝑀𝑁[𝑦]×10𝟑 r.m.s. Vector

p(end)
Target function

𝓕{p(𝑒𝑛𝑑)} × 105

Goodness-of- fit,

CP(end)

3 1 37 1.000 (1.55;0.49;1.83) 1.5 0.271

3 1000 -0.42 0.031 (1.51,0.50,1.81) 1.5*10-3 0.009

3 10000 0.13 0.011 (1.50,0.50,1.80) 1.4*10-4 0.0006

5 1 34 1.000 (1.83;0.52;2.40) 4.2  0.822

5 1000 0.43 0.031 (1.50,0.50,1.82) 4.0*10-3  0.014

5 10000 -0.10 0.011 (1.50,0.50,1.80) 4.1*10-4 0.0011

Table 3. Coulomb-types point defect in a crystal. Rotation angle Φ = 0°. Recovery of the true 3D displacement 

field function 𝑓𝐶𝑡𝑝𝑑(𝐫 − 𝐫0) under retrieval: true vector p(true) = {1.50, 0.50, 1.80}, start vector p(start) is {1.12, 

0.554, 2.40}. Parameter CP(end) is the goodness-of-fit, for the noise-free IP-frame CP(end) = 6.5*10-11. Total grid 

crystal sizes along to coordinates (X, Y, Z)-coordinates are equal to (61, 61, 21); the voxel sizes along to (X, Y, 

Z)-coordinates are equal to: ΔX= π/30, ΔY= π/30 and ΔZ= π/20

Discussion

 A goal of the paper is to propose a statistical process-
ing of the XRDT 2D IPs data to obtain quantitative information 
about the nanoscaled crystal-lattice defects in the case when a 
noise composes some part of the 2D IPs data observed.

 Based on the simulated noise XRDT 2D IPs data, a 
statistical imperative noise-filtering procedure has been devel-
oped. It allows one to conclude that in particular, the statistical 
noise-averaging technique of the XRDT 2D IPs acquired secures 
retrieving of plausible information about small- size defects in 
a crystal with rather high accuracy. Both the RNGA algorithm 
and Wolfram Mathematica program have been employed for 
the computer simulating and processing of the noise XRDT 2D 
IPs. As can be seen from Table 3, the goodness-of-fit parameter 
can be significantly improved by noise-filtering procedure from 
high discrepancy values of more than 27% (obtained without 
noise-averaging technique) to values of less than 1% (it corre-
sponds to an almost perfect reconstruction of the 3D displace-
ment field function of Coulomb-type point defect). Based on the 
qNLMSA algorithm applied for solving the inverse XRDT issue, 
one has justified that the XRDT method may be a powerful tool 
for obtaining quantitative information about small-size crystal- 
lattice-defects, e.g., clusters, small dislocation loops etc.

 As to a general solution of the inverse XRDT problem, 
a question of how the above statistical approach will work in a 
proper way for other kinds of crystal-lattice defects is still open 

for research. This is a good topic for future work. Staying on the 
study presented in the paper, we would like only to state that the 
elaborated statistical formalism works well and pushes ahead of 
the XRDT technique by accumulating the noise-filtered 2D-IPs 
data.

 It is clear, the question of the easy-of-access XRDT 2D 
IPs rate is important. As is shown in the paper, statistical com-
bining of the noise 2D IPs frames may effectively to improve the 
signal-to- noise ratio. In some cases, statistical processing of the 
2D IP fragments may to reveal low-intensity details masked by a 
noise.

 In present, the 2D IP-frame rate of the CCD detectors 
is quite high, and it can be altered within a wide range from 1 
kHz to tens of MHz, only governed by reasons of the sufficient 
X-ray intensity per pixel [28]. Fast detectors would have reduced 
the time of the experiment, but in practice the flux of quanta 
after a highly absorbing sample turns out to be too small and the 
exposure time must be increased to achieve an acceptable relative 
level of noise in the image. Assuming the typical 2D IP-frame 
exposure time being about 10-20 sec [8], one can design a set 
of 100 frames under conditions when each of them contains, at 
least, 100 photons per the detector pixel in the 2D IP fragments 
needed.
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Conclusion

 In concluding, it is worth to mention that in the paper, 
the statistical filtering of the 2D IPs really relates to the experi-
mental XRDT conditions in the two aspects as the measurement 
duration of the 2D IP frames from several milliseconds and so the 
Gaussian amplitude noise values. They correspond to the inci-
dent X-ray beam intensity of the order of 1014 photons/sec that is 
typical for most of the X-ray experimental facilities being in the 
modern synchrotrons of the 3rd - 4th generations.

 All the above allows to make an assertion that the sta-
tistical noise filtering of the 2D IPs data proposed is a good way 
to improve a signal-to-noise ratio, at least, for investigating and 
analyzing the small-size defects by using the XRDT technique. 
Checking the conformity of the noise distribution in the frame 
combined from several frames against the normal law allows the 
experimenter to achieve a quality image by calculating the nec-
essary number of individual measurements and conducting the 
necessary series of experiments.
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Supplementary part 

Pearson's chi-squared test description

 Pearson's chi-squared test (χ2) [S1] is a statistical test 
applied to sets of categorical data to evaluate how likely it is that 
any observed difference between the sets arose by chance. It is 
the most widely used of many chi-squared tests (e.g., Yates, like-
lihood ratio, portmanteau test in time series, etc.) – statistical 
procedures whose results are evaluated by reference to the chi-
squared distribution. In contexts where it is important to im-
prove a distinction between the test statistic and its distribution, 
names similar to Pearson χ-squared test or statistic are used.

 It tests a null hypothesis stating that the frequency distri-
bution of certain events observed in a sample is consistent with a 
particular theoretical distribution. The events considered must 
be mutually exclusive and have total probability 1. A common 
case for this is where the events each cover an outcome of a cate-
gorical variable.

 Pearson's chi-squared test is used to assess three types of 
comparison: goodness of fit, homogeneity, and independence. A 
test of goodness of fit establishes whether an observed frequency 
distribution differs from a theoretical distribution. A test of ho-
mogeneity compares the distribution of counts for two or more 
groups using the same categorical variable A test of indepen-

dence assesses whether observations consisting of measures on 
two variables, expressed in a contingency table, are independent 
of each other.

For all three tests, the computational procedure includes the fol-
lowing steps:

(1)  Calculate the chi-square test statistic, which is the sum of 
squares of deviations between observed and theoretical frequen-
cies, normalized to estimates of standard deviations.

(2)  Determine the degrees of freedom, df, of that statistic.

(3)  For a test of goodness-of-fit, df = Cats − Parms, where 
Cats is the number of observation details recognized by the mod-
el, and Parms is the number of parameters in the model adjusted 
to make the model best fit the observations: The number of details 
is reduced by the number of fitted parameters in the distribution.

(4)  For a test of homogeneity, df = (Rows − 1)×(Cols − 1), 
where Rows corresponds to the number of details (i.e. rows in 
the associated contingency table), and Cols corresponds to the 
number of independent groups (i.e. columns in the associated 
contingency table).

(5)  For a test of independence, df = (Rows − 1)×(Cols − 1), 
where Rows corresponds here to the number of details associated 
with one variable, and Cols corresponds to the number of details 
in the second variable.

(6)  Select a desired level of confidence (significance level, 
p-value) for the result of the test.

(7)  Compare (χ2) to the critical value from the chi-squared 
distribution with df degrees of freedom and the selected confi-
dence level (one-sided, since the test is only in one direction, i.e. 
"is the test value greater than the critical value?"), which in many 
cases gives a good approximation of the distribution of (χ2).

(8)  Sustain or reject the null hypothesis that the observed 
frequency distribution is the same as the theoretical distribu-
tion based on whether the test statistic exceeds the critical value 
of (χ2). If the test statistic exceeds the critical value of (χ2), the 
null hypothesis (H0 = there is no difference between the distri-
butions) can be rejected, and the alternative hypothesis (H1 = 
there is a difference between the distributions) can be accepted, 
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both with the selected level of confidence. If the test statistic falls 
below the threshold (χ2) value, then no clear conclusion can be 
reached, and the null hypothesis is sustained (we fail to reject the 
null hypothesis), though not necessarily accepted.

 This method is an effective test of whether the theoret-
ical observations from the constructed model correspond to the 
experimental data, since an incomplete or incorrect model leads 
to violations of the expected law of the distribution of the differ-
ences between them.
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