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Abstract

Genetic algorithms are promisingly noteworthy directions towards creation of new materials and thus represent a frontier

area of materials science and engineering. This literature review is an overview of the application of genetic algorithms as it

pertains to data-driven discovery of new materials. Focusing on the example of inorganic phosphors the review outlines the

enormous breadth of selecting materials for specific technologies and the pros and cons of computational and experimental

methods used.  While the enormity of  the materials  parameter space endows the materials  research discipline with robust

and diverse research topics,  it  also presents the challenge of thoroughly exploring the unlimited extent of  potential  mate-

rials. The increasing rapidity of advances in materials synthesis and processing therefore necessitate the development of in-

telligent, data-intensive methods for materials discovery and optimization. Using the discovery and optimization of inorgan-

ic phosphors we present a review of machine learning and genetic algorithms as a path toward improved materials.
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Introduction

Motivation  for  Data-Driven  Materials  Discovery
and  Optimization

The study of materials science and engineering has

been generally regarded as a pursuit toward the understand-

ing of  the relationships among materials  processing,  struc-

ture, properties, and performance. Within these characteris-

tics lie endless possibilities—synthesis, fabrication, and char-

acterization  techniques  are  numerous  and  varied,  and  the

creation of a material can involve a multitude of techniques.

Furthermore, these methods can be performed at any num-

ber of specified conditions, introducing an even high dimen-

sionality  to  this  materials  parameter  space.  Essentially,  the

number  of  potential  materials  and  the  paths  to  their  opti-

mization are virtually infinite. This vast continuum of choic-

es presents both opportunities and obstacles to researchers.

While  the  enormity  of  materials  parameter  space  endows

the discipline with robust and diverse research topics, it also

presents the challenge of thoroughly exploring the unlimit-

ed  extent  of  potential  materials.  The  increasing  rapidity  of

advances in materials synthesis and processing therefore ne-

cessitate the development of intelligent, data-intensive meth-

ods for materials discovery and optimization.

Conventional  Computational  Methods  in  Materials
Science and their Limitations

Conventionally,  first-principles  computational

methods have employed for  material  design and optimiza-

tion.  Variants  of  density  functional  theory  (DFT),  tight-

binding  methods,  and  many  bodied  GW  approaches  have

been used extensively to understand and improve materials

properties ranging from band gaps to molecular dynamics.

In a  2016 article  in  Chemical  Society  Reviews,  Butler  et  al.

[1]  analyzed  the  computational  expense  and  reliability  of

computational methods in materials science and created the

schematic shown in Figure 1. In this image, the shade of the

left  semicircle  corresponds  to  the  difficulty  of  the  method

for  the  researcher,  the  shade  of  the  right  semicircle  corre-

sponds to the reliability of the method, and the scale of the

circle represents the scaling of the computational effort with

system size.

Figure 1: Computational methods evaluated by their reliability, required researcher effort, and scaling of the computational effort with sys-
tem size. The coloration of the left semicircle represents the complexity and expertise necessary for the researcher to perform the technique,
where a blue tone signifies low effort and a red tone signifies high effort. The coloration of the right semicircle characterizes the reliability of

the method on a similar coloration scale. Finally, the size of the Circle demonstrates how the computational effort scales with system size.
Methods evaluated include a variety of density functional theory (DFT) techniques, including local density approximation (LDA) and general-

ized gradient approximation (GGA), empirical tight-binding, and many-bodied GW approaches. Reprinted from Butler, et al. [1].
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The Figure 1 graph demonstrates the classic trade-

off between the accuracy of a computational method and its

cost,  factoring  in  the  additional  opportunity  cost  of  a  re-

searcher’s time and expertise. Most computational research-

ers tend to choose a DFT variation-these techniques typical-

ly  have  a  relatively  high  reliability  and  a  relatively  low  re-

searcher effort, as shown by the generally blue tones in the

left halves of the DFT circles and the generally red tones in

the respective right halves.

While  these  traditional  computational  methods

have  successfully  addressed  countless  materials  science  re-

search questions, they do suffer from certain limitations. In

2008, Cohen et al. provided insights into the current limita-

tions of DFT in a powerful article in Science [2]. Cohen iden-

tifies the exchange-correlational functional as the key com-

ponent that determines the ultimate success or failure of a

DFT simulation. Significant complications in the exchange--

correlational  functional  arise  from  the  extension  of  the

Pauli  Exclusion Principle  to  a  many-bodied system. The

Pauli Exclusion Principle states that the wave function for

two identical fermions is antisymmetric with respect to the

exchange of the two particles. This implies that the wave

function will switch signs if both the space and spin coordi-

nates of the identical particles are swapped. The exchange

correlation functional describes the many-body interactions

that occur as a result of this antisymmetric relation. Howev-

er, the exact form of the exchange-correlation in terms of

density is not precisely known, and approximations must be

used. While simple approximations have performed particu-

larly well for the prediction of the structure and thermody-

namic properties of materials, errors in the approximations

for complex exchange-correlation functionals account for

substantial  failure  in  the  prediction of  properties.  These

challenges have caused simulations to underestimate band

gaps, energetic barriers to chemical reactions, and charge

transfer  excitation  energies,  among  others.  In  addition,

DFT struggles to adequately model systems with many de-

generate states, such as in transition metals, highly correlat-

ed systems, or the breaking of atomic bonds.

These difficulties in approximating the exchange--

correlation functional  embody a  fundamental  limitation of

atomistic, ab initio approaches. Since these methods derive

results from the current understanding of quantum mechan-

ics, they naturally lack methodology for adequately incorpo-

rating any presently unexplained mechanisms into mathe-

matical  models.  Conversely,  recent  advances  in  machine

learning provide  approaches  for  pattern recognition and

prediction from data a priori. In essence, the implementa-

tion of machine learning methods can provide predictions

from data despite scarce information about specific underly-

ing mechanisms. While traditional ab initio approaches are

a core tenet of computational materials research, modern

methods in machine learning demonstrate the potential to

overcome conventional computational barriers and to ad-

dress applied problems where ab initio approaches may not

be applicable.

Machine Learning in Science and Engineering

Machine  learning  is  a  discipline  centered  on  the

study  of  algorithms  that  can  learn  from  and  make  predic-

tions about data based on sample input data, rather than ex-

plicitly  defined  relationships.  While  machine  learning  has

been  a  prolific  research  topic  in  computer  science  and

mathematics for over half a century, these methods have al-

so become a cornerstone in fields such as genomics [3], bio-

logical  image  analysis  [3],  and  drug  design  [4]  within  the

past several decades. In computational biology, groups such

as  Xiong  et  al.  have  used  deep  neural  networks  to  predict

gene  splicing  activity  and  genetic  determinants  of  disease

[5]. Additionally, convolutional neural networks are widely

used method in biological image analysis; Ning et al. success-

fully predicted abnormal development from embryo images

[6],  and Xu et  al.  classified colon histopathology images as

cancerous  and  non-cancerous  [7].  Machine  learning  tech-

niques have been used in essentially all facets of drug design

research-Cong et  al.  used a  genetic  algorithm-based model

to predict the activity of H1N1 influenza inhibitors [8], and

Wang et al. used convolutional neural networks to develop

a  highly-accurate  computational  for  the  prediction  of  pro-

tein  secondary  structure  [9].  Applications  of  neural  net-

works and other forms of machine learning are now essen-

tially commonplace in these research areas.

As  disciplines,  computational  biology  and  mate-

rials science are similar in their focus on understanding rela-

tionships between molecular or atomic structure and the re-

sulting  properties.  Therefore,  it  is  relatively  surprising  that
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the application of machine learning techniques to materials

science  has  been  comparably  slow;  these  methods  are  not

yet conventional in materials science, yet there are countless

machine learning frameworks for the analysis of genomic se-

quences,  cross-disciplinary image analysis,  and drug devel-

opment.  In  a  recent  review  of  evolutionary  algorithms  in

materials  research,  Le  and  Winkler  [10]  partially  attribute

the lack of machine learning in materials science to relevant

articles  being  published  in  mainly  computer  science  jour-

nals. This justification seems dubious, based on both the rig-

orous application of machine learning to computational bi-

ology and the interdisciplinary nature  of  materials  science.

Rather,  it  is  more  likely  that  the  relatively  recent  advances

in high throughput synthesis and characterization methods

now present machine learning techniques as increasingly vi-

able methods for data analysis. This explanation is particu-

larly  probable  considering  the  history  of  machine  learning

in computational biology; the role of machine learning in ge-

nomic research has always necessitated a massive amount of

sequencing  data,  which  became  increasingly  available  with

improvements  in  high-throughput  sequencing  methods

over  the  last  few  decades.

Furthermore,  big  data  collaboration  and  open

source  databases  have  become  increasingly  popular  in  the

general  scientific  community  in  the  past  decade,  perhaps

leading  to  a  renewed  interest  in  developing  materials

databases and adopting machine learning techniques for ma-

terials  research.  Individual  research  groups  and  university

organizations alike have begun developing their own mate-

rials  data  repositories.  A  creation  of  the  Wolverton  lab  at

Northwestern  University,  the  Open  Quantum  Materials

Database (OQMD) offers over 400,000 DFT-calculated ther-

modynamic and structural properties of materials [12]. On

a larger scale, the NanoHub organization at Purdue Univer-

sity  has  introduced  the  Nanomaterial  Registry  [13].  This

provides a  wealth of  information about nanomaterial’s,  in-

cluding details about the preparation and synthesis of sam-

ples  and  links  to  publications  and  relevant  environmental

studies.  The  expansive  development  of  materials  databases

demonstrates an escalating interest in an informatics-driven

approach  to  materials  design  and  optimization.  However,

with  these  databases  still  in  their  relative  infancy,  there  is

minimal regulation of data quality or structure, resulting in

concerns about the reliability and practicality of data sets.

With  the  introduction  of  the  Materials  Genome

Initiative (MGI) by President Obama in 2011, the opportu-

nity  for  materials  data  collaboration  and  standardization

has  dramatically  improved  [14].  This  initiative  represents

the collaboration of federal agencies,  national labs,  and the

private  sector  to  develop  policy,  resources,  and  infrastruc-

ture  for  the  discovery  and  production  of  advanced  mate-

rials.  Institutions  spanning  the  Department  of  Defense

(DoD), the National Science Foundation (NSF), the Nation-

al Renewable Energy Laboratory (NREL), and the National

Aeronautics and Space Administration (NASA) have collec-

tively contributed over half a billion dollars in the pursuit of

advanced materials. A significant component of this pursuit

is  the  push  toward  making  relevant  digital  data  accessible.

The National Institute of Standards and Technology (NIST)

created the Materials Data Repository (MDR), which allows

public access to over 50 gigabytes of heterogeneous material

data and any corresponding metadata. As an MGI collabora-

tor,  the  DOE  has  also  established  multiple  computational

databases and tools. Initiated by the DOE, the Materials Pro-

ject  at  the  University  of  California,  Berkeley,  uses  innova-

tive theoretical tools to identify and predict influential clean

energy materials.  Additionally,  the  DOE founded the Cen-

ter  for  Predictive  Integrated  Structural  Materials  Science

(PRISMS), which combines experiments, theory, and simu-

lation into unique computational tools for predicting struc-

tural materials. The integration of diverse areas of materials

research embodies a second tenet of the initiative: an effort

to shift the paradigm approach to materials research by blur-

ring the conventional lines between experimental and com-

putational work.

Since its inception in 2014, the MGI has catalyzed

efforts to accelerate the discovery, design, and development

of  new materials  through the  integration of  computational

tools and data with experimental work. As one notable early

success, the MGI infrastructure supported the development

of a new formulation for the U.S. Mint’s new five-cent coin.

Given  the  increasing  market  cost  of  nickel,  the  U.S.  Mint

sought a new formulation of the coinage material with cer-

tain  specifications.  The  MGI data  and computational  tools

enabled NIST to design a new coinage material that met the

required parameters within 18 months, whereas traditional
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methods  usually  necessitate  three  to  five  years  [15].  The

number of institutions leveraging MGI data and tools cont-

inues to grow-the organization’s Fifth Principal Investigator

Meeting in June 2022 highlighted work from dozens of re-

search groups experimenting with emerging machine learn-

ing approaches  and cross-cutting research strategies  to  ad-

vance  materials  discovery  and  optimization.  One  research

group, with a project entitled “Design and Synthesis of Nov-

el Magnetic Materials,” stated that their work has led to the

development  of  a  comprehensive  magnetic  materials

database. Leveraging this database, the group uses an adap-

tive  genetic  algorithm  coupled  to  first-principles  codes  to

predict  properties of  potential  magnetic materials.  As a re-

sult  of  these  efforts,  the  researchers  are  exploring  a  patent

for materials related to their work on Fe-Co-B compounds,

which  were  predicted  by  machine  learning  techniques  and

synthesized by experiment. Numerous other institutions re-

port  the  pursuit  of  patents,  contributions  toward  open-ac-

cess materials data, and educational activities to support the

development  of  the  next  generation  of  materials  science

workforce  [16].  As  another  marker  of  MGI’s  success,  the

MGI Strategic Plan indicates that usership of the MGI mate-

rials  information  infrastructure  has  grown  exponentially,

from less than 10,000 users in 2014 to over 150,000 users in

recent years [17]. These early achievements demonstrate the

growing potential  of  the MGI,  as  it  strives  toward its  goals

to create a unified materials innovation infrastructure, har-

ness the power of materials data, and train the research and

development  workforce.  Despite  increasing  momentum  to

improve  the  availability  and  accessibility  of  materials  data,

the application of machine learning techniques to materials

science problems may face a secondary challenge. Materials

science, with its roots in physics and chemistry, has always

pursued an understanding of the relationships among mate-

rials  processing,  structure,  properties,  and  performance;

methodology for improving materials sans the understand-

ing of an underlying mechanism is unconventional. It’s pos-

sible  that  therein  lies  another  reason  why  materials  scien-

tists  have  been  slow  to  embrace  machine  learning-the

“black box” nature of certain algorithms does not enable re-

searchers  to  uncover  the  reasoning  behind  materials  opti-

mization.

Accordingly, researchers may be concerned about

the foundations and the legitimacy of these methods; for ex-

ample,  there  are  review  articles  regarding  how  machine

learning  methods,  specifically  neural  networks,  have  been

incorrectly applied in materials  science [18,19].  These arti-

cles note issues with small sample sizes or the choice of algo-

rithms  that  are  not  ideal,  or  even  suitable,  for  a  particular

problem. Since neural networks are used as predictive mod-

els,  these  issues  are  certainly  concerning;  the  development

of an incorrect model would lead to inaccurate predictions.

However,  this  isn’t  the  case  with  optimization  algorithms;

in  this  instance,  the  use  of  too  small  a  sample  size  would

lead to a limited exploration of parameter space. This would

result  in  a  globally  suboptimal  choice  for  the  material,  but

the material would still have improved properties. Thus, in

the  realistic  context  of  a  search  for  an  improved  (though

not  necessarily  optimal)  material,  optimization  algorithms

have an inherent degree of flexibility in their methodology.

Researchers  appear  to  be  navigating  these  challenges  by

adeptly  pairing  machine  learning  models  with  other  first-

principles computational research, to preserve the ability to

investigate fundamental,  underlying mechanisms while ad-

vancing optimization processes [16].

Machine  Learning  in  Materials  Science:  Evolutio-
nary  Algorithms

Of  the  machine  learning  techniques  that  have

been utilized in materials research, evolutionary algorithms

remain  some  of  the  most  extensively  used.  During  the

mid-1960s  and  early  1970s,  several  research  groups  began

independently  developing  evolutionary  algorithms.  Re-

searchers in the USA established simple genetic algorithms

(SGAs)  and  evolutionary  programming  (EP),  while  scien-

tists in Germany developed evolution strategy (ES) [20]. Lat-

er  developed  methods  include  particle  swarm,  genetic

swarm, and ant colony optimization. These approaches vary

in their methodology, but they all apply biological princi-

ples  to  non-biological  optimization  problems.  Drawing

from evolutionary concepts such as reproduction, replica-

tion, and mutation, evolutionary algorithms use concepts in-

spired by natural selection to methodically determine the

ideal characteristics for a system. In general, evolutionary al-

gorithms involve initializing a population,  evaluating the

quality of the members, altering that population using evolu-

tionary operators, and repeating until the quality of mem-

bers have exceeded a certain threshold.
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In the context of materials science, evolutionary al-

gorithms  evolve  a  population  of  materials  toward  an  im-

proved property by determining an optimized set of charac-

teristics for that material.  While materials researchers have

predominantly used variations of simple genetic algorithms

to approach optimization problems, other evolutionary algo-

rithms  are  not  without  representation.  In  2011,  Giaquinto

et al. used particle swarm optimization to determine homo-

geneous  upconversion coefficients  in  Er3+  -doped glasses

and erbium-activated devices,  demonstrating an alternate

method for determining these parameters without the ex-

pensive equipment typically used to measure them [21]. Ad-

ditionally,  ant  colony  optimization  has  been  used  as  a

method to find the lowest energy configuration of silicon

atomic  clusters  [22].  Nonetheless,  genetic  algorithms re-

main the most common choice for researchers applying evo-

lutionary approaches to their research.

While evolutionary algorithms are one application

of machine learning techniques, numerous other algorithms

and approaches are common and emerging in the field, and

the present  state  of  machine learning algorithms for  mate-

rials science is well-described in the literature. As one exam-

ple, Chong, et al. provides an overview of machine learning

algorithms used in materials science, in a review article for

Frontiers  of  Physics.  The  article  enumerates  common  ma-

chine learning methods, including kernel-based linear algo-

rithms, neural networks, decision tree and ensembles, unsu-

pervised  clustering,  generative  models,  and  transfer  learn-

ing, as well as emerging machine learning models, including

explainable  artificial  intelligence  methods  and  few-shot

learning  [23].  While  many  other  machine  learning  tech-

niques  beyond genetic  and  evolutionary  algorithms  are  ef-

fectively employed in the field, the scope of this work will be

to detail  and comment on the broad application of  genetic

algorithms to materials science and engineering. Genetic al-

gorithms  present  several  advantages  that  support  effective

discovery and optimization, which is particularly of interest

for  materials  science  researchers-particularly,  these  algo-

rithms  are  adept  at  optimizing  among  large  parameter

spaces, and they are well-suited to solving problems in non-

linear or multimodal parameter spaces. Genetic algorithms,

therefore, are one tool that can be integrated into materials

research, and recent work in the field demonstrates the pair-

ing  of  genetic  algorithms  with  other  computational  tech-

niques to facilitate materials discovery and optimization.

Accordingly,  the remainder of this article will  ad-

dress  the mechanics  of  genetic  algorithms and case studies

specific to materials optimization and discovery. In Section

2,  the  typical  mechanics  and methodology  of  genetic  algo-

rithms are presented, and their implementation in materials

research is broadly described. Then, Section 3 focuses on a

single field of application: the optimization and discovery of

inorganic phosphors with genetic algorithm-assisted meth-

ods.  This  case  study  serves  to  exemplify  the  challenges  in-

volved  in  combining  experimental  and  computational  ap-

proaches, as well as to demonstrate the relevant subfields in

which genetic algorithms may be applicable. In this final sec-

tion, some mention will be given to the myriad applications

of genetic algorithms in materials science, but these are wel-

l-detailed elsewhere. Rather, this work aims to present com-

mentary  on  the  efficacy  of  the  application  of  genetic  algo-

rithms to materials science problems, and to discuss the fu-

ture role of machine learning in materials research and de-

velopment.

Genetic Algorithms

Overview of Genetic Algorithms

Fundamentally, genetic algorithms are metaheuris-

tic  optimization methods:  they  generate  approximate  solu-

tions  in  parameter  spaces  that  are  too  large  to  be  compre-

hensively  explored  [10].  Genetic  algorithms  are  especially

suited to address materials discovery and enhancement due

to  their  optimization-based  design  and  their  capability  of

handling high-dimensional parameter spaces [20]. As noted

in the previous section, genetic algorithms draw upon con-

cepts  from  natural  selection,  such  as  reproduction,  inheri-

tance, and mutation. However, in the case of materials engi-

neering, the evolving population is a set of diverse materials.

Each individual material is a member of the population, and

it is characterized by a selected set of properties. These cho-

sen attributes are represented mathematically, and they are

known individually as the genes of the member, or compre-

hensively as a genome of the member. Based on the mem-

ber’s  genes,  a  given material’s  genome has an associated

fitness,  determined by a fitness function.  The fitness of a

member is essentially a score that represents how well the
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particular genome optimizes the desired property or set of

properties. The fitness function is the specific function that

maps the mathematical representation of the genes to the fit-

ness. Since each material’s genome has an associated fitness,

the population of all possible materials genomes has an asso-

ciated fitness landscape, as demonstrated in Figure 2. The ob-

jective of implementing a genetic algorithm is to identify

the material genome that has the greatest fitness, thereby op-

timizing the desired characteristics of the material.

A successful  navigation of the fitness landscape is

dependent on two assumptions: (1) the genomes in consid-

eration are numerous and varied enough to adequately rep-

resent the essential features of the fitness landscape, and (2)

the  properties  associated  with  the  fitness  are  well-defined

for  the  chosen  genomes  [10].  With  regards  to  the  first  as-

sumption,  consider  a  fitness  landscape  with  multiple  local

maxima, as shown in Figure 2. It is evident that different op-

timization paths may yield different results for the optimal

genome. For example, the dotted blue path leads to the true

maximum, associated with a genome that has certain values

for Gene 1 and Gene 2.  Conversely,  the dashed green path

and the red line path lead to suboptimal fitness values, and

the dashed green path results in a material with a starkly dif-

ferent  genome.  While  finding  local  maxima  for  the  fitness

will still improve the resulting properties, it is undoubtedly

ideal  to  seek  a  global  maximum.  As  such,  it  is  essential  to

consider  a  representative  variety  of  genomes  that  will  pro-

vide a thorough understanding of the fitness landscape. Re-

garding the second assumption, it is critical that the proper-

ty being optimized is physically well-defined on the domain

of genomes represented in the fitness landscape. With these

two assumptions satisfied, genetic algorithms are well-suit-

ed for the search for the genome that  optimizes the fitness

of a chosen set of materials.

Figure 2: An example of a fitness landscape. Gene 1 and Gene 2 are selected characteristics of a material, such as a processing condition, or a
mechanical, electrical, chemical, optical, thermal, or magnetic property. Fitness is a measure of how well the genome at some (i,j) values for

Gene 1 and Gene 2 optimize a desired property or set of properties. The red, blue, and green paths represent different optimization steps that
a genetic algorithm could take to diverse maxima on the fitness landscape. Note that not all paths necessarily lead to the same maximum, as

multiple local maxima may be present. Reprinted from Le, et al. [10].

To determine the material with the optimal proper-

ties, evolutionary operations are applied to an initial popula-

tion to produce subsequent generations of materials. Typical-

ly, the evolutionary operations employed are selection, repro-

duction, crossover, and mutation, though elitism may also be

incorporated. The generic procedure of an evolutionary al-

gorithm is shown in Figure 3. First, an initial population of

materials is chosen. Often, the initial population is random-

ly selected, but it can incorporate prior knowledge about the

material. For each generation, the fitness of each member is

evaluated, and a selection of members is algorithmically cho-

sen to create the next generation. As in natural selection,

members with favorable properties receive preferential treat-

ment; those with optimal fitness tend to be selected more

frequently  than  their  subpar  counterparts.  The  selected
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members  are  then  randomly  paired  for  crossover:  the

genomes of the member pairs are randomly spliced together

to create the genome for the member of the next generation.

Subsequently,  some  members  are  subjected  to  muta-

tion-their genome is slightly, randomly altered in at least

one manner. In addition, some methods implement elitism.

In this operation, a few of the top members are passed on to

the next generation without any alteration, thus preserving

some members that may be the optimal solution. These evo-

lutionary operations are repeated for a certain number of

generations or until a desired fitness is reached.

While  the  overarching  purpose  of  a  genetic  algo-

rithm is to determine the optimal material genome, evolutio-

nary operations are  dual-purpose.  As previously  discussed,

the  successful  implementation  of  a  genetic  algorithm  re-

quires  a  thorough  exploration  of  the  fitness  landscape,  as

learned through the  fitness  evaluation of  a  diverse  popula-

tion. Therefore, genetic algorithms require mechanisms for

both  genome  optimization  and  exploration,  conveniently

provided by the assortment of evolutionary operations. The

pseudo-deterministic aspect of the natural selection process,

in which members with high fitness are given preference, in-

herently leads to an improvement of overall population fit-

ness  over  the  course  of  many  generations.  Conversely,  the

random aspects of the natural selection process, namely the

probabilistic  selection  of  members,  as  well  as  the  intrinsic

stochasticity in crossover and mutation, allow a broader ex-

amination of the fitness landscape. In this way, genetic algo-

rithms integrate optimization with stochasticity to continu-

ally improve properties,  without neglecting the exploration

of parameter space.

Optimization of Inorganic Phosphors Using
Genetic Algorithms

Considering  Broad  Applications  of  Genetic  Algo-
rithms  in  Materials  Science

While not quite a common technique for materials

scientists,  genetic  algorithms  have  found  a  wide  variety  of

applications in the discipline. They have been used to identi-

fy low-energy configurations of elemental clusters for sili-

con, carbon, and silver, among others. They have been im-

plemented for the design of alloys, nanowires, thin-films, ce-

ramics, and more. They have played a significant role in the

optimization of catalysts. These applications and more have

been compiled and discussed in more than one prominent

review article regarding genetic algorithms in materials sci-

ence [1,10,20]. Therefore, the purpose of this work is not to

repeat a list of research applications already detailed else-

where. Rather, as previously noted, this work aims to detail

the implementation of genetic algorithm approaches in a

specific subfield: the discovery and optimization of inorgan-

ic phosphors. A thorough account of the use of genetic algo-

rithms in this area serves two purposes. First, understand-

ing the challenges faced in utilizing genetic algorithms in

materials science elucidates their realm of applicability in

the discipline, while also revealing how these approaches

are uniquely suited to address certain problems.  Second,

and perhaps more importantly, the black box nature of th-

ese approaches raises questions regarding the role of ma-

chine learning in materials research and engineering, a disci-

pline  traditionally  more  receptive  to  rigorous  basic  re-

search.
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Figure 3: The general process of a genetic algorithm. A population is established, and then evolutionary operators are applied to each genera-
tion. Typically, evolutionary operators include selection, reproduction (crossover/mutation), and elitism. The process is repeated on subse-

quent generations until a certain number of iterations have been completed or a specific fitness threshold is reached

Early  Methodology  for  Genetic  Algorithm-Assisted
Inorganic Phosphor Optimization

Due to developments in semiconductor technolo-

gies  and  advances  in  optics,  light-emitting  diodes  (LEDs)

have revolutionized lighting-with high intensity,  efficiency,

and affordability,  white LEDs (WLEDs) are quickly replac-

ing  fluorescent  and  incandescent  lighting.  The  increasing

commercial  application  of  WLEDs  has  created  a  need  for

long-lasting devices that can provide consistent, high-inten-

sity light. As such, in the past decade, significant effort has

been  given  to  improving  WLEDs.  While  there  are  several

types of WLEDs, the optimal color rendition is provided by

tricolor  WLEDs,  which  use  soft  ultraviolet  light  to  excite

red, green, and blue (RGB) phosphors. To generate quality

light,  the  chosen RGB phosphors  must  provide  high  lumi-
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nescence efficiency and the ideal color balance. As such, the

optimization of  the  luminescence  of  RGB phosphors  is  es-

sential to further development of WLEDs.

In 2003, K.S. Sohn et al. applied an innovative ap-

proach  to  improving  inorganic  phosphors:  genetic-algo-

rithm  assisted  combinatorial  chemistry  (GACC),  which

combined  genetic  algorithm  optimization  with  the  experi-

mental high-throughput synthesis of phosphors [24]. To be-

gin,  the  group  developed  a  solution-based,  combinatorial

chemistry method for the synthesis of a library of red phos-

phors. The inorganic oxide created was a Eu3+-activated alka-

li earth borosilicate system with varying amount of seven ca-

tions: Eu, Mg, Ca, Sr, Ba, B, and Si. The library featured 108

samples with a variety of compositions, chosen to reflect the

existing knowledge about phosphors. After measuring emis-

sion and decay curves, the group calculated the luminance

of each sample at 400 nm, the wavelength of an InGaN light

source typically used in an LED. Based on the resulting da-

ta, the initial generation of samples was entered into the ge-

netic algorithm. Each sample was identified in the genetic al-

gorithm by the set of seven mole fractions, and the fitness of

each sample was based on luminance.

The  objective  of  the  genetic  algorithm  is,  of

course,  to  identify  the  composition  of  the  sample  with  the

maximum  luminance,  achieved  through  an  evaluation  of

the fitness of each subsequent sample. However, the explicit

relationship  between  material  composition  and  luminance

is obviously unknown; therefore, a hypothetical fitness func-

tion was chosen. In general, selecting a fitness function can

be somewhat challenging; the function should ideally reflect

the most significant trends in the data. To determine a suit-

able  fitness  function,  Sohn  et  al.  performed  simulations  of

three  different  hypothetical  functions  and  evaluated

whether the choice of the fitness function would alter the op-

timization  speed  or  the  accuracy  of  the  result.  They  found

that all the fitness functions led to the same optimal point af-

ter ten generations, as shown in Figure 4a.

The genetic algorithm was then applied to the ex-

perimental  data,  and the optimization results  are shown in

Figure 4b. In the top panel, the maximum and average lumi-

nance  are  plotted  as  a  function  of  generation.  The  lumi-

nance quickly improves with each generation and then con-

verges after the sixth iteration. Moreover, the bottom panel

shows the evolution of the composition as a function of gen-

eration.  The  material  appears  to  be  optimized  by  slightly

tweaking  most  of  the  components  while  significantly  de-

creasing the relative fraction of boron and essentially remov-

ing  strontium.  While  these  results  are  certainly  promising,

they  are  only  useful  if  the  material  can  be  experimentally

synthesized and if the resulting material does, in fact, show

improvements in the luminance.

The inset in the top panel of Figure 4b provides ex-

perimental  evidence  of  an  improved  set  of  materials.  The

first generation has population members with a wide range

of  luminesce  while  the  tenth  generation  has  members  that

are  almost  exclusively  bright,  demonstrating the success  of

GACC.  The  sample  with  the  highest  luminance  was

Eu0.14Mg0.18Ca0.07Ba0.12B0.17
-Si0.32Oδ,  and  other  top  members

had  s imi lar  composi t ions .  The  luminance  of

Eu0.14Mg0.18Ca0.07Ba0.12B0.17
-Si0.32Oδ was found to be five times

higher than commercially available Y2O3:Eu3+ and ten times

higher than commercially available Y2O2S:Eu3+  at 400 nm

excitation. As could be expected, this material does not ap-

pear to be a stoichiometric single line compound, as verified

by Joint Committee of Powder Diffraction Standards data

and inorganic oxide phase diagrams. Rather, these members

are most likely non-stoichiometric compounds with a varie-

ty of constituents and phases. From a materials science per-

spective, an in-depth investigation of the resulting material

structure and properties is certainly desirable, and this topic

is pursued by the author in a later publication. However,

from a purely materials engineering perspective, the result

within the scope of the project is self-evident: GACC was

successfully utilized in the improvement of red inorganic

phosphors, regardless of knowledge of the structure of the

material or of the true relationship between material compo-

sition and luminance.
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Figure 4: (a) The fitness of simulated populations over 35 generations for three different hypothetical fitness funct ions. All three fitness func-
tions converged to similar populations with peak fitness. Minimal variation was observed in the speed and accuracy of the optimization

among the three fitness functions. (b) Top panel: The luminance as a function of generation when the genetic algorithm was applied to actual
data. Inset: The resulting experimental luminance of the first and tenth generations, demonstrating the stark improvement resulting from al-

gorithmic optimization. Bottom panel: The evolution of the ideal material composition over the course of ten generations. Reprinted from
Sohn, et al. [19].

Criticism of Genetic Algorithm Approaches and the
Development of Improved Methods

Over  the  next  decade,  this  approach  was  used  to

optimize  other  groups  of  inorganic  phosphors.  Between

2005 and 2008, Sohn and his collaborators published simi-

lar  works  for  the  improvement  of  green  [25],  red  [26,27],

and blue [28] inorganic phosphors for a variety of systems.

Unfortunately, few of these results led to commercial appli-

cations; only their work on Y(V,P)O4:Eu3+ phosphors was

developed further in industry, for use in plasma display pan-

els and liquid crystal display back light units. In fact, the re-

sults of these experiments were greatly overshadowed by

more conventional research on phosphor materials during

this time [29-32]. In a 2009 paper, A.K. Sharma identifies

two main reasons for this:  scalability and reproducibility

[33]. Despite its high-throughput nature, the experimental

method initially developed for these projects was found in-

compatible  for  mass-scale  commercial  production.  Even

more problematically, the synthesis procedure resulted in

relatively  high  experimental  inconsistencies,  resulting  in

low reproducibility of the desired materials. In solid-state

synthesis, this is considered somewhat inevitable; mixing be-

havior is typically somewhat unpredictable, leading to more

variability in the results. These two glaring issues led to the

GACC being criticized as “methodology for the methodolo-

gy,” rather than a serious contributor to the development of

commercial  engineering materials.  Despite  these  difficul-

ties, proponents of genetic algorithm-assisted discovery and

optimization  of  phosphors  remained  undeterred.  Where

some apparently viewed the research area as an inapplicable

demonstration of methodology, researchers in the field con-

sidered these studies as preliminary research necessary in or-

der  to  develop  more  refined  and  accurate  mathematical

models. At this point, it had become exceedingly evident

that a simplistic single genetic algorithm would not be suffi-

cient to address commercial-scale phosphor optimization; a

greater degree of mathematical complexity was required. As

such,  research in the field made a  significant  shift  from

proof-of-concept demonstrations toward approaches with
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multiple  evolutionary  algorithm layers  and an  improved

ability to handle complex optimizations.

In  the  same  2009  publication  that  identified  the

current  limitations  of  GACC,  Sharma  et  al.  introduced  a

more refined approach for  genetic  algorithm-assisted opti-

mization, specifically designed to address the reproducibili-

ty problem [33]. This method, multi-objective genetic algo-

rithm-assisted combinatorial materials search (MOGACM-

S),  provided  methodology  for  the  simultaneous  maximiza-

tion of luminance and minimization of an inconsistency in-

dex,  resulting  in  the  identification  of  inorganic  phosphors

that are both highly luminescent and consistent. To incorpo-

rate a measure of consistency, researchers regarded experi-

mental  inconsistency  as  a  function  of  precursor  solution

composition, based on literature about solid-state synthesis.

Comparing the luminance of two experimental libraries, the

researchers defined the inconsistency index for each sample

as the difference in luminance, and asserted that this was as-

sociated with the sample composition.  MOGACMS, as  de-

tailed in previous studies, was then performed on an MnO-

Na2O-Li2O-MgO-CaO-GeO2 system, and an optimal phos-

phor was identified: Na2MgGeO4:Mn2+, referred to as NMG.

NMG was found to be slightly less efficient than the estab-

lished BAM phosphor, but to have improved chromaticity.

Additionally, NMG was found to be slightly more efficient

than the ZSM phosphor but with slightly inferior chromatic-

ity, comparatively. Moreover, the phosphor was reliably re-

produced, demonstrating the effectiveness of MOGACMS

in identifying a suitable phosphor candidate. Due to its rela-

tively impressive luminescence properties and its consisten-

cy, NMG demonstrates potential for commercial applica-

tions.

Addressing  Industry  Needs  with  Genetic  Algorith-
m-Assisted Materials Discovery

As clearly demonstrated by the general criticism to-

ward  phosphor  research  lacking  overt  commercial  poten-

tial, research in this area has been driven by industrial inter-

ests.  Within  the  past  five  years,  there  has  been  another

notable  shift  in  the  focus  of  inorganic  phosphor  research.

With  the  surge  in  development  of  commercial  WLEDs,

many existing inorganic phosphor materials  have been pa-

tented,  necessitating  the  discovery  of  novel,  structurally

unique phosphors. As a result, research has shifted from the

optimization  of  current  phosphors  to  the  identification  of

new  materials,  free  of  intellectual  property  complications.

Of course, this switch of focus is somewhat ironic, consider-

ing  the  backlash  toward  genetic-algorithm  assisted  meth-

ods.  Researchers  were  initially  criticized  for  developing

methodology that failed to prioritize the discovery and opti-

mization of immediately commercially viable materials, yet

intellectual  property  issues  have  inevitably  necessitated the

discovery  of  previously  uninvestigated  phosphors.  Given

this new concern, algorithm-assisted methods have become

increasingly  relevant:  the  ability  to  intelligently  explore

large parameter spaces is inarguably essential to the task of

discovering innumerable new materials, and machine learn-

ing methods provide a cleanly structured procedure for do-

ing so.

With  phosphor  research  centered  on  novel  phos-

phor discovery, algorithm-assisted methods shifted to more

complex models capable of incorporating commercial needs

for  structurally  unique  materials.  In  2012,  W.B.  Park  et  al.

integrated a non-dominated-sorting genetic algorithm (NS-

GA)  with  a  second evolutionary  algorithm,  particle  swarm

optimization  (PSO),  to  discover  new,  inorganic  phosphors

from  the  SrO-CaO-BaO-La2O3-Y2O3-Si3N4-Eu2O3  system

[34]. NGSA and PSO were used consecutively to conduct a

more structured search for an optimal phosphor; the NSGA

broadly searched for promising regions in the parameter

space, while PSO conducted a more refined search for an op-

timized phosphor within these regions. While this specific

composition space contains several well-known phosphors,

these phosphors were specifically excluded from the experi-

mental search. As a result, the NSGA and PSO investigated

solely novel materials.

Similar to MOGACMS, NSGAs are a type of multi-

-objective genetic algorithm, capable of balancing the maxi-

mization or minimization of several parameters. The distin-

guishing  characteristic  of  NSGAs  is  the  method  by  which

they manage multiple optimizations. Generally, a multi-ob-

jective  optimization  problem  has  two  types  of  solutions:

nondominated  or  dominated.  A  nondominated,  or  Pareto

optimal, solution is an answer in which an objective cannot

be improved except at the expense of other objectives. Con-

versely, a dominated solution is explicitly better than other
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solutions  for  all  objectives.  When  a  dominated  solution  is

not present, several Pareto optimal solutions may exist and

have  equal  validity.  This  set  of  optimized  solutions  is  re-

ferred to as a Pareto front. The set of all possible solutions,

including  non-optimal  ones,  can  be  categorized  in  Pareto

groups,  which are  sets  of  solutions that  have equal  validity

within their group but may not offer the best optimization.

More explicitly, the Pareto front is the Pareto group consist-

ing of the set of equal (yet different) optimal solutions. NS-

GAs use Pareto groups to evaluate the potential optimal so-

lutions to a problem.

In  this  study,  the  Pareto  front  consisted  of  solu-

tions  that  simultaneously  maximized  photoluminescence

(PL) intensity of the phosphor and minimized the “structu-

ral  rank”.  The  structural  rank  was  designed  to  reflect  the

novelty of the material, based on information from xray dif-

fraction (XRD) databases; a low rank generally correspond-

ed to an unknown phase while a high rank corresponded to

a familiar XRD pattern or a damaged sample. To begin the

genetic algorithm, an initial population was randomly cho-

sen. As the genetic algorithm iterated through each genera-

tion,  the  PL  intensity  and  structural  rank  were  evaluated,

and the  samples  were  associated  with  Pareto  groups.  Rela-

tive fitness values were assigned to samples based on affilia-

tion with Pareto groups, and the genetic algorithm proceed-

ed.  After  four  generations,  the  algorithm  converged  on  a

one-sample Pareto front, relegating all other samples to less-

er Pareto groups. This optimal sample was centered on the

CaO-La2O3-Si3N4-Eu2O3 quaternary composition.

Based on this result, PSO was implemented to ex-

plore the quaternary composition space. While an extensive

discussion of  PSO is  outside of  the scope of  this  work,  de-

tails are readily available in the publication. PSO resulted in

the identification of a novel phosphor with a promising PL

intensity and spectral distribution, which demonstrates po-

tential  for  WLEDs  commercial  applications:  La4 -

xCaxSi12O3+xN18-x:Eu2+  (x=1.456).

These results exemplify the utility of genetic algo-

rithm-assisted  methods  for  novel  phosphor  identification,

demonstrated further by ensuing research in the field; equal-

ly  successful  results  were  achieved  in  similar  studies  by

W.B.  Park  et  al.  in  subsequent  years  [35-38].  Additionally,

in  2019,  R.  Lv  et  al.  implemented  several  computational

techniques  to  identify  the  optimal  activator  concentration

for a lanthanide phosphor to maximize the luminescent in-

tensity. In comparing four techniques–PSO, another genetic

algorithm approach, simulated annealing, and improved an-

nealing  with  a  harmony search  algorithm–the  study  found

that the genetic algorithm approach identified acceptable so-

lutions at  lower experimental  time and cost,  relative to the

other approaches. Further, PSO identified the highest lumi-

nescent  intensity  given  the  most  generations  [39].  This

growing  body  of  studies  suggests  that  genetic  algorithms

and PSO can provide value in the identification of novel in-

organic phosphors.

Moving  Forward:  Expanding  Data  Sources  for  the
Identification  of  Novel  Inorganic  Phosphors  and
Other  Inorganic  Functional  Materials

While researchers have successfully used genetic al-

gorithms  and  PSO  to  identify  novel  inorganic  phosphors

with desirable characteristics, the availability and growth of

materials  databases  present  new opportunities  for  improv-

ing techniques in the future. In a 2018 study, J. Brgoch et al.

established  a  new  approach  for  phosphor  screening  meth-

ods by merging supervised machine learning to predict De-

bye  temperature  with  high-throughput  calculations  using

DFT to approximate band gap. The authors determined the

Debye  temperature  for  2,610  DFT-based  moduli  from  the

Materials Project database and employed the results to train

their model for determining Debye temperature. After estab-

lishing  the  training  set,  the  authors  could  apply  the  model

to estimate Debye temperatures of compounds compiled in

crystallographic  databases,  and  particularly  selected  com-

pounds  with  available  information  on  bandgap,  among

other  criteria.  Ultimately,  the  authors  used  this  method  to

identify  one  specific  inorganic  phosphor  crystal  structure

that  stood  out  among  2071  materials  [40].

Though this study utilized a different form of ma-

chine  learning–support  vector  machine  regression–it  is

notable in the context of this work, as it exemplifies the op-

portunity to employ big data from materials databases into

the  identification  of  novel  inorganic  phosphors.  As  ex-

plained in the paper by C. Park et al.:  “Brgoch et al.  sorted

out  the  data  paucity  problem  by  employing  a  massive
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amount  of  DFT-generated  data  for  inorganic  compounds

(including non-phosphor materials) residing in a well-estab-

lished  database  as  training  data  and  further  expanding  the

fully trained [machine learning] model to a small phosphor

dataset. This could be considered a brilliant case of transfer

learning, which currently is a booming trend in applications

of [machine learning].” [41].

Future work in the identification of novel inorgan-

ic  phosphors  could  benefit  from  more  extensive  investiga-

tion and integration of data from various materials databas-

es, including DFT data as well as XRD data, as investigated

by B.D. Lee et al. [42].

Summary, Concluding Observations, and Future Re-
search Directions

Despite  their  relatively  gradual  entrance  into  the

realm  of  materials  science  and  engineering,  genetic  algo-

rithms  and  other  forms  of  machine  learning  have  made

noteworthy contributions in a broad range of subfields; yet,

more significantly, these algorithms demonstrate the poten-

tial to address certain research topics in ways other methods

cannot.  The need for  novel  and distinct  commercial  mate-

rials  is  continually  growing,  and  evolutionary  algorithms

are especially suited to combinatorial exploration and opti-

mization. This was particularly evident in the case of the dis-

covery  of  inorganic  phosphors;  while  machine  learning

methods initially fell short of conventional methods, the in-

dustrial demand for high-throughput materials discovery in-

evitably  led  to  the  triumph  of  genetic  algorithm-assisted

methods. This case study exemplifies the strength of genetic

algorithm-based methods:  solving  highly  applied  problems

in  materials  engineering.  These  methods  individually  are

not ideal for developing a fundamental understanding of an

underlying  mechanism,  a  goal  frequently  sought  in  basic

materials research-with a black box approach, evolutionary

algorithms  allow  researchers  to  perform  optimization,  not

understand the basic science leading to the optimization.

While evolutionary algorithms and other forms of

machine  learning  may  not  provide  insight  into  the  funda-

mental  mechanisms  underlying  materials  properties,  they

are progressively becoming viable methods for the improve-

ment  of  commercial  materials.  As  such,  the  demand  for

new and improved materials  could  result  in  the  increasing

application  of  algorithm-assisted  optimization  approaches,

particularly  by  materials  scientists  and  engineers  in  indus-

try. Additional work remains, however, to mitigate the chal-

lenges  of  implementing  these  computational  methods.  To

address concerns about interpretability of machine learning

models  and  results,  future  research  is  needed  to  refine  ap-

proaches  for  pairing  machine  learning  techniques  with

first-principles  computational  methodologies,  to  reap  the

benefits  of  machine  learning  assisted  optimization  while

meeting  expectations  for  conducting  basic  scientific  re-

search. Further, the use of machine learning in materials sci-

ence  continues  to  be  limited  by  available  data  that  can  in-

form models. Initiatives such as the MGI support the devel-

opment of robust datasets and tools that enable researchers

to  integrate  machine  learning  techniques  into  their  work.

These datasets and tools,  however, are still  being built.  En-

hanced efforts to improve the findability, accessibility, inter-

operability,  and  reusability  of  materials  data,  such  as

through  the  implementation  of  “FAIR  Guiding  Principles

for Scientific Data Management and Stewardship” could im-

prove opportunities for materials science researchers to lev-

erage machine learning techniques [43].
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