1. Wang LH (2007) Japanese Encephalitis Outbreak, Yuncheng, China, 2006. Emerg Infect Diseas 13:1123-5.
  2. CDC (2019) C.f.D.C.a.P. Japanese Encephalitis.
  3. WHO (2019) WHO Japanese encephalitis.
  4. Lindahl J (2012) Occurrence of Japanese Encephalitis Virus Mosquito Vectors in Relation to Urban Pig Holdings. The American Journal of Tropical Medicine and Hygiene 87: 1076-82.
  5. Liang GX Gao, EA Gould (2015) Factors responsible for the emergence of arboviruses; strategies, challenges and limitations for their control. Emerg Microb Infect 4: e18.
  6. Dash AP (2013) Emerging and re-emerging arboviral diseases in Southeast Asia. J Vector Borne Dis 50:  77-84.
  7. Mackenzie JS, DJ Gubler, LR Petersen (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nature Med10: S98.
  8. Nain M (2016) Japanese encephalitis virus invasion of cell: allies and alleys. Rev Med Virol 26: 129-41.
  9. Erlanger TE (2009) Past, Present, and Future of Japanese Encephalitis. Emerg Infect Diseas15: 1-7.
  10. Ghosh D, A Basu (2009) Japanese Encephalitis—A Pathological and Clinical Perspective. PLOS Neglected Tropical Diseas 3: e437.
  11. Fang Je (2013) Identification of Three Antiviral Inhibitors against Japanese Encephalitis Virus from Library of Pharmacologically Active Compounds 1280. PLoS ONE 8: e78425.
  12. Kim JM (2008) A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. J Virol 82:  7846-62.
  13. Li M (2017) Japanese encephalitis virus counteracts BST2 restriction via its envelope protein E. Virol 510: 67-75.
  14. Sterling T, JJ Irwin (2015) ZINC 15–ligand discovery for everyone. Journal of chemical information and modeling 55: 2324-37.
  15. Lu G, P Gong (2013) Crystal Structure of the Full-Length Japanese Encephalitis Virus NS5 Reveals a Conserved Methyltransferase-Polymerase Interface. PLOS Pathogens 9: e1003549.
  16. Berman HM (2000) The protein data bank. Nucleic acids res 28: 235-42.
  17. Humphrey W, A Dalke, K Schulten (1996) VMD: visual molecular dynamics. J molecul graphics 14: 33-8.
  18. Trott O, AJ Olson (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry 31: 455-61.
  19. Huey R, G Morris (2003) AutoDock Tools. La Jolla, CA, USA: The Scripps Research Institute.
  20. Seco J, FJ Luque, X Barril (2009) Binding Site Detection and Druggability Index from First Principles. J Med Chem 52: 2363-71.
  21. Guvench O, AD MacKerell (2009) Computational Fragment-Based Binding Site Identification by Ligand Competitive Saturation. Plos Computational Biol 5.
  22. Kuzmanic A (2020) Investigating Cryptic Binding Sites by Molecular Dynamics Simulations. Accounts Chem Res 53: 654-61.
  23. Phillips JC (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26: 1781-802.
  24. Bakan A (2012) Druggability Assessment of Allosteric Proteins by Dynamics Simulations in the Presence of Probe Molecules. Journal of Chemical Theory and Computation 8: 2435-47.
  25. Vanommeslaeghe K (2010) CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. Journal of computational chemistry, 2010. 31(4): p. 671-690.
  26. Yu W (2012) Extension of the CHARMM general force field to sulfonyl‐containing compounds and its utility in biomolecular simulations. J computational chem 33: 2451-68.
  27. Wang H (2019) A non-beta-lactam antibiotic inhibitor for enterohemorrhagic Escherichia coli O104: H4. J Mol Med 97: 1285-97.
  28. Fernando S, T Fernando (2017) Antivirals for allosteric inhibition of Zika virus using a homology model and experimentally determined structure of envelope protein. BMC research notes 10: 1-8.
  29. Gejji V (2020) An RNA-dependent RNA polymerase inhibitor for tick-borne encephalitis virus. Virology 546: 13-9.
  30. Mulgaonkar N (2020) Druggability assessment of precursor membrane protein as a target for inhibiting the Zika virus. Journal of Biomolecular Structure and Dynamics, 2020: 1-17.
  31. Koes DR, CJ Camacho (2012) ZINCPharmer: pharmacophore search of the ZINC database. Nucleic acids res 40: W409-W414.
  32. Trott O, AJ Olson (2010) Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Computational Chem 31: 455-61.
  33. DE Shaw Research and Schrödinger L (2018) Schrödinger Release 2018-4: Desmond Molecular Dynamics System. D. E. Shaw Research, New York, NY, 2018. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY.
  34. Release S4: Schrödinger Release 2018-4 Protein Preparation Wizard. New York: Schrödinger, LLC, 2018.
  35. Sastry GM (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of computer-aided molecular design 27: 221-34.
  36. Schrödinger L Schrödinger Release 2018-4: LigPrep. Schrödinger LLC: New York, NY, USA, 2018.
  37. Harder E (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. Journal of chemical theory and computation 12: 281-96.
  38. Schrödinger L., Schrödinger Release 2018-4:  Epik. Schrödinger, LLC, New York, NY, 2018., 2018.
  39. Genheden S, U Ryde (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert opinion on drug discovery 10: 449-61.
  40. Schrödinger, L., Schrödinger Release 2018-4: Prime. Schrödinger, LLC, New York, NY, 2020., 2018.
  41. Bhatnagar S, A Rani, R Kumari (2015) Therapeutic potential of Triphala against human diseases. Int. J. Pharm. Sci. Rev. Res 31: 5-13.
  42. Upadhyay A, P Agrahari, D Singh (2014) A review on the pharmacological aspects of Terminalia chebula. Int J Pharmacol 10: 289-98.
  43. Liu F (2020) Chebulanin exerts its anti-inflammatory and anti-arthritic effects via inhibiting NF-κB and MAPK activation in collagen-induced arthritis mice. Int Immunopharmacol 88: 106823.
  44. Lu K (2020) Chebulinic acid is a safe and effective antiangiogenic agent in collagen-induced arthritis in mice. Arthritis research & therapy 22: 1-11.
  45. Wang M, Y Li,  X Hu (2018) Chebulinic acid derived from triphala is a promising antitumour agent in human colorectal carcinoma cell lines. BMC complementary and alternative med 18: 1-9.
  46. Chhabra, S., et al., Chebulinic acid isolated from the fruits of Terminalia chebula specifically induces apoptosis in acute myeloid leukemia cells. Phytotherapy Res 31: 1849-1857.
  47. Kesharwani A (2015) Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC complementary and alternative med 17: 1-11.
  48. Li P (2020) Identification of Chebulinic acid and Chebulagic acid as novel influenza viral neuraminidase inhibitors. Frontiers in microbiol 11: 182.
  49. Raghav PK, YK Verma, GU Gangenahalli (2012) Molecular dynamics simulations of the Bcl-2 protein to predict the structure of its unordered flexible loop domain. Journal of molecular modeling 18: 1885-1906.
  50. Raghav PK, YK Verma, GU Gangenahalli (2012) Peptide screening to knockdown Bcl-2's anti-apoptotic activity: Implications in cancer treatment. International journal of biological macromolecules 50: 796-814.