1Reddy KM, Manorama SV, Reddy AR (2003) Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 78: 239-245.
2Wang YQ, Hu GQ, Duan XF, Sun HL, Xue QK (2002) Microstructure and formation mechanism of titanium dioxide nanotubes. Chem Phys Lett 365: 427-431.
3Yuan ZY, Su BL (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surf A: Physicochem and Engineer Aspects 241: 173-183.
4Luo HM, Takata T, Lee Y, Zhao JF, Domen K, et al. (2004) Photocatalytic activity enhancing for titantium dioxide by co-dopingwith bromine and chlorine. Chem Mater 16: 846-849.
5Mu Q, Li Y, Wang H, Zhang Q (2012) Self-organized TiO2 nanorod arrays on glass substrate for self-cleaning antireflection coatings. J Colloid Interface Sci 365: 308-313.
6Yu JC, Zhang, LZ, Zheng Z, Zhao JC (2003) Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem Mater 15: 2280-2286.
7Lee AC, Lin RH, Yang CY, Lin MH, Wang WY (2008) Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol-gel method. Mater Chem Phys 109: 275-280.
8Caruso RA, Schattka JH, Greiner A (2001) Titanium dioxide tubes from sol–gel coating of electrospun polymer fibers. Adv Mater 13: 1577-1579.
9Kawakita M, Kawakita J, Sakka Y (2010) Material properties controlling photocurrent on TiO2 aggregates with plane orientation for dye-sensitized solar cells. J Nanopart Research 12: 2621-2628.
10O'Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye- sensitized colloidal TiO2 films. Nature 353: 737-740.
11Goh GKL, Chan KYS, Liu T (2011) Hydrothermal epitaxy of ferromagnetic cobalt doped titanium dioxide films at 120 degrees C. CrystEngComm 13: 524-529.
12Lindgren T, Mwabora JM, Avendano E, Jonsson J, Hoel A, et al. (2003) Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J Phys Chem B 107: 5709-5716.
13Lobl P, Huppertz M, Mergel D (1994) Nucleation and growth in TiO2 films prepared by sputtering and evaporation. Thin Solid Films 251: 72-79.
14Murugesan S, Kuppusami P, Parvathavarthini N, Mohandas E (2007) Pulsed laser deposition of anatase and rutile TiO2 thin films. Surf Coatings Technol 201: 7713-7719.
15Suda Y, Kawasaki H, Ueda T, Ohshima T (2004) Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films 453: 162-166.
16Matsumoto Y, Murakami M, Hasegawa T, Fukumura T, Kawasaki M, et al. (2002) Structural control and combinatorial doping of titanium dioxide thin films by laser molecular beam epitaxy. Appl Surf Sci 189: 344-348.
17Osterwalder J, Droubay T, Kaspar T, Williams J, Wang CM, et al. (2005) Growth of Cr-doped TiO2 films in the rutile and anatase structures by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films 484: 289-298.
18Lotnyk A, Senz S, Hesse D (2007) Epitaxial growth of TiO2 thin films on SrTiO3, LaAlO3 and yttria-stabilized zirconia substrates by electron beam evaporation. Thin Solid Films 515: 3439-3447.
19Sandell A, Anderson MP, Alfredsson Y, Johansson MKJ, SchnadtJ, et al. (2002) Titanium dioxide thin-film growth on silicon (111) by chemical vapor deposition of titanium (IV) isopropoxide. J Appl Phys 92: 3381.
20Nizard H, Kosinova ML, Fainer NI, Rumyantsev Yu M, Ayupov BM, et al. (2008) Deposition of titanium dioxide from TTIP by plasma enhanced and remote plasma enhanced chemical vapor deposition. Surf Coatings Technol 202: 4076-4085.
21Jia QX, McCleskey TM, Burrell AK, Lin Y, Collis GE, et al. (2004) Polymer-assisted deposition of metal-oxide films. Nature Mater 3: 529-532.
22Fei L, Naeemi M, Zou G, Luo HM (2013) Chemical solution deposition of epitaxial metal-oxide nanocomposite thin films. The Chem Record 13: 85-101.
23Zou G, Zhao J, Luo HM, McCleskey TM, Burrell AK, et al. (2013) Polymer-assisted deposition: a chemical solution route for a wide range of materials growth. Chem Soc Rev 42: 439-449.
24Hou RZ, Wu AY, Vilarinho PM (2009) Low-Temperature Hydrothermal Deposition of (BaxSr1-x)TiO3 Thin Films on Flexible Polymeric Substrates for Embedded Applications. Chem Mater 21: 1214–122.
25Chan KYS, Goh GKL (2009) Solution Epitaxy of TiO2 Thin Films, J Electrochem Soc 156: D231-D235.
26Wang X, Chen L, Zhao J, Jin L, Li L (2008) Hydrothermal synthesis of thin films of barium titanate nanotube arrays. Integrated Ferroelectrics 99: 125–131.
27Sun K, Wei W, Ding Y, Jing Y, Wang Z, et al. (2011) Crystalline ZnO thin film by hydrothermal growth. Chem Commun 47: 7776–7778.
28Luo HM, Lin Y, Wang H, Baily SA, Lee JH, et al. (2008) Amorphous silica nanoparticles embedded in epitaxial SrTiO3 and CoFe2O4 matrices. Angew Chemie Int Ed 47: 5768-5771
29Jiang YF, Chen G, Xu X, Chen X, Deng S, et al. (2014) Direct growth of mesoporous anatase TiO2 on nickel foam by soft template method as binder-free anode for lithium-ion batteries. RSC Adv 4: 48938-48942.
30Ryu WH, Nam DH, Ko YS, Kim RH, Kwon HS (2012) Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries. Electrochimica Acta 61: 19– 24.
31Fang H, Liu M, Wang D, Sun T, Guan D, et al. (2009) Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnol 20: 225701.
32Armstrong G, Armstrong AR, Bruce PG, Reale P, Scrosati B (2006) TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv Mater 18: 2597–2600.
33Cao FF, Wu XL, Xin S, Guo YG, Wan LJ (2010) Facile synthesis of mesoporous TiO2-C nanosphere as an improved anode material for superior high rate 1.5 V rechargeable Li ion batteries containing LiFePO4-C cathode. J Phys Chem C 114: 10308–10313.
34Wang J, Zhou Y, Hu Y, O'Hayre R, Shao Z (2011) Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. J Phys Chem C 115: 2529-2536.
35Guo YG, Hu YS, Sigle W, Maier J (2007) Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks. Adv Mater 19: 2087-2091.
36Yang MC, Lee YY, Xu B, Powers K, Meng YS (2012) TiO2 flakes as anode materials for Li-ion-batteries. J Power Sources 207: 166-172.
37Wang D, Choi D, Li J, Yang Z, Nie Z, et al. (2009) Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3: 907-914.
38Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4: 2682-2699.