1Pan S, Jiang H, Weng H (2008) Feeding methanol in an FCC unit. Pet Sci Technol 26: 170-180.
2Khadzhiev SN, Kolesnichenko NV, Ezhova NN (2008) Manufacturing of lower olefins from natural gas through methanol and its derivatives (review). Petroleum Chemistry 48: 325-334.
3Koempel H, Liebner W (2007) Lurgi's methanol to propylene (MTP) report on a successful commercialisation. Stud In Surf Sci Catal 167: 261-267.
4Chen D, Moljord K, Holmen A (2012) A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous Mesoporous Mater 164: 239-250.
5Liu H, Peng L, Xue N, Guo X, Ding W, et al. (2012) The effects of carbonaceous species in HZSM-5 on methanol-to-olefin process. Appl Catal A 421-422: 108-113.
6Jang HG, Min HK, Lee JK, Hong SB, Seo G (2012) SAPO-34 and ZSM-5 nanocrystals size effects on their catalysis of methanol-to-olefin reactions. Appl Catal A 437-438: 120-130.
7Park TY, Froment GF (2004) Analysis of fundamental reaction rates in the methanol-to- olefins process on ZSM-5 as a basis for reactor design and operation. Ind Eng Chem Res 43: 682-689.
8Liu J, Zhang C, Shen Z, Hua W, Tang Y, et al. (2009) Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst. Catal Commun 10: 1506-1509.
99) Papari S, Mohammadrezaei A, Asadi M, Golhosseini R, Naderifar A (2011) Comparison of two methods of iridium impregnation into HZSM-5 in the methanol to propylene reaction. Catal Commun 16: 150-154.
10Kaarsholm M, Joensen F, Nerlov J, Cenni R, Chaouki J, et al. (2007) Phosphorous modified ZSM-5: Deactivation and product distribution for MTO. Chem Eng Sci 62: 5527-5532.
11Patterson DW (1998) Artificial neural networks: theory and applications. Prentice Hall PTR
12Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38: 1128-1135.
13Fahmi I, Cremaschi S (2012) Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models. Comput Chem Eng 46: 105-123.
14Giordano PC, Martinez HD, Iglesias AA, Beccaria AJ, Goicoechea HC (2010) Application of response surface methodology and artificial neural networks for optimization of recombinant Oryza sativa non-symbiotic hemoglobin 1 production by Es- cherichia coli in medium containing byproduct glycerol. Bioresour Technol 101: 7537-7544.
15Rostamizadeh M, Rizi SMH (2012) Predicting gas flux in silicalite-1 zeolite membrane using artificial neural networks. J Membr Sci 403-404: 146-151.
16Adib H, Haghbakhsh R, Saidi M, Takassi MA, Sharifi F, et al. (2013) Modeling and optimization of Fischer-Tropsch synthesis in the presence of Co (III)/Al2O3 catalyst using artificial neural networks and genetic algorithm. J Nat Gas Sci Eng 10: 14-24.
17
18Valeh-e-Sheyda P, Yaripour F, Moradi G, Saber M (2010) Application of artificial neural networks for estimation of the reaction rate in methanol dehydration. Ind Eng Chem Res 49: 4620-4626.
19Kito S, Satsuma A, Ishikura T, Niwa M, Murakami Y, et al. (2004) Application of neural network to estimation of catalyst deactivation in methanol conversion. Catal Today 97: 41-47.
20Omata K, Yamazaki Y, Watanabe Y, Kodama K, Yamada M (2009) Artificial neural network (ANN)-aided optimization of ZSM-5 catalyst for the dimethyl ether to olefin (DTO) reaction from neat dimethyl ether (DME). Ind Eng Chem Res 48: 6256-6261.
21Liu Y, Liu Y, Liu D, Cao T, Han S, et al. (2001) Design of CO2 hydrogenation catalyst by an artificial neural network. Comput Chem Eng 25: 1711-1714.
22Corma A, Serra JM, Argente E, Botti V, Valero S (2002) Application of artificial neural networks to combinatorial catalysis: Modeling and predicting ODHE catalysts. Chem Phys Chem 3: 939-945.
23Ali Akcayol M, Cinar C (2005) Artificial neural network based modeling of heated catalytic converter performance. Appl Therm Eng 25: 2341-2350.
24Moliner M, Serra JM, Corma A, Argente E, Valero S, et al. (2005) Application of artificial neural networks to high-throughput synthesis of zeolites. Microporous Mesoporous Mater 78: 73-81.
25Arcotumapathy V, Siahvashi A, Adesina AA (2012) A new weighted optimal combination of ANNs for catalyst design and reactor operation: methane steam reforming studies. AlChE J 58: 2412-2427.
26Ehsani MR, Bateni H, Razi Parchikolaei G (2013) Modeling of oxidative coupling of methane over Mn/Na2WO4/iO2 catalyst using artificial neural network. Iran J Chem Chem Eng 29: 855-861
27Maity U, Basu JK, Sengupta S (2013) A neural network prediction of conversion of benzothiophene oxidation catalyzed by nano-Ti-beta catalyst. Fuel 113: 180-186.
28Alavi M, Jazayeri-Rad H, Behbahani RM (2013) Optimizing the feed conditions in a dimethyl ether production process to maximize methanol conversion using a hybrid first principle neural network approach. Chem Eng Commun 201: 650-673.
29Betiku E, Ajala SO (2014) Modeling and optimization of thevetia peruviana (yellow oleander) oil biodiesel synthesis via Musa paradisiacal (plantain) peels as heterogeneous base catalyst: A case of artificial neural network vs. response surface methodology. Ind Crops Prod 53: 314-322.
30Badday AS, Abdullah AZ, Lee KT (2014) Artificial neural network approach for modeling of ultrasound-assisted transesterification process of crude Jatropha oil catalyzed by heteropolyacid based catalyst. Chem Eng Process. Process Intensif 75: 31-37.
31Kaarsholm M, Rafii B, Joensen F, Cenni R, Chaouki, J, et al. (2009) Kinetic modeling of methanol-to-olefin reaction over ZSM-5 in fluid bed. Ind Eng Chem Res 49: 29-38.
32Kaarsholm M, Joensen F, Cenni R, Chaouki J, Patience GS (2011) MeOH to DME in bubbling fluidized bed: Experimental and modelling. Can J Chem Eng 89: 274-283
33Bercic G, Levec J (1992) Intrinsic and Global Reaction Rate of Methanol Dehydration over− Al2O3 Pellets. Ind Eng Chem Res 31: 1035-1040.
34Hasanzadehshooiili H, Lakirouhani A, Medzvieckas J (2012) Superiority of artificial neural networks over statistical methods in prediction of the optimal length of rock bolts. J Civ Eng Manag 18: 655-661.
35Raoof F, Taghizadeh M, Eliassi A, Yaripour F (2008) Effects of temperature and feed composition on catalytic dehydration of methanol to dimethyl ether over γ-alumina. Fuel 87: 2967-2971.
36Li H, He S, Ma K, Wu Q, Jiao Q, et al. (2013) Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether: Effect of SiO2/Al2O3 ratio in H-ZSM-5. Appl Catal A 450: 152-159.
37Bjorgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, et al. (207) Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. J Catal 249: 195-207.
38Wang J.; Cheng X.; Guo J.; Chen X.; He H, et al. (2010) Catalytic performances of binder-free ZSM-5 catalysts for dehydration of crude methanol to dimethyl ether. Chin J Chem 28: 183-188.
39Hosseininejad S, Afacan A, Hayes RE (2012) Catalytic and kinetic study of methanol dehydration to dimethyl ether. Chem Eng Res Des 90: 825-833.
40Mei C, Wen P, Liu Z, Liu H, Wang Y, et al. (2008) Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. J Catal 258: 243-249.
41Park TY, Froment GF (2001) Kinetic modeling of the methanol to olefins process. 1. Model formulation. Ind Eng Chem Res 40: 4172-4186.
42Gong T, Zhang X, Bai T, Zhang Q, Tao L, et al. (2012) Coupling conversion of methanol and C4 hydrocarbon to propylene on La-modified HZSM-5 zeolite catalysts. Ind Eng Chem Res 51: 13589-13598.