1zur Hausen H (2009) The search for infectiouscauses of human cancers: where and why. Virology 392: 1-10.
2Bravo IG, de Sanjosé S, Gottschling M (2010) The clinical importance of understanding the evolution of papillomaviruses. Trends Microbiol 18: 432-8.
3Ward M, Ward A, Johansson O (2016) Does the mosquito have more of a role in certain cancers than is currently appreciated? - The mosquito cocktail hypothesis. Med Hypotheses 86: 85-91.
4Mushtaq M, Darekar S, Kashuba E (2016) DNA tumor viruses and cell metabolism. Oxid Med Cell Longev 2016 :1-9.
5 Araldi R, Módolo D, De-Sá-Júnior P, Consonni S, Carvalho R, Roperto F, et al. (2016) Genetics and metabolic deregulation following cancer initiation: A world to explore. Biomed Pharmacother 82: 449-58.
6Araldi R, Assaf S, Carvalho R, Carvalho M, Mazzuchelli-de-Souza J, et al. (in press) Papillomaviruses: a systematic review. Genet Mol Biol.
7Munday J (2014) Bovine and human papillomaviruses: A comparative review. Vet Pathol 1-13.
8Rapp L, Chen J (1998) The papillomavirus E6 proteins. Biochim Biophys Acta - Rev Cancer1378: 1-19.
9Adam M, Pini C, Túlio S, Cristina J, Lins L, Torres R, et al.(2015) Assessment of the association between micronuclei and the degree of uterine lesions and viral load in women with human papillomavirus. Cancer Genomics Proteomics 12: 67-72.
10Stocco dos Santos RC, Lindsey CJ, Ferraz OP, Pinto JR, Mirandola RS, et al.(1998) Bovine papillomavirus transmission and chromosomal aberrations: an experimental model. J Gen Virol 79: 2127-2135.
11Araldi R, Melo T, Diniz N, Carvalho R, Beçak W, Stocco R (2013) Bovinepapillomavirus clastogenic effect analyzed in comet assay. Biomed Res Int 2013: 1-7.
12 Melo T, Araldi R, Pessoa N, De-Sá-Júnior P, Carvalho R, Beçak W, et al. (2015) Bos taurus papillomavirus activity in peripheral blood mononuclear cells: demonstrating a productive infection. Genet Mol Res14: 16712-16727.
13 Araldi R, Melo T, Neves A, Spadacci-Morena D, Magnelli R, Módulo D, et al.(2015) Hyperproliferative action of bovine papillomavirus (BPV): Genetics and histopathological aspects. Genet Mol Res 14: 12942-12954.
14Potocki L, Lewinska A, Klukowska-Rötzler J, Bielak-zmijewska A, Grabowska W, Rzeszutek I, et al. (2014) Sarcoid-derived fibroblasts: links between genomic instability, energy metabolism and senescence. Biochimie 97: 163-72.
15Williams V, Filippova M, Filippov V, Payne K, Duerksen-Hughes P (2014) Human papillomavirus type 16 e6* induces oxidative stress and DNA damage. J Virol 88: 6751-6761.
16 Wongworawat Y, Filippova M, Williams V, Filippov V, Duerksen-Hughes P (2016) Chronic oxidative stress increases the integration frequency of foreign DNA and human papillomavirus 16 in human keratinocytes. Am J Cancer Res 6: 764-780.
17Doorbar J (2016) Model systems of human papillomavirus-associated disease. J Pathol 238: 166-179.
18Campos S, Trindade C, Ferraz O, Giovanni D, Lima A, Caetano HA, et al. (2008) Can established cultured papilloma cells harbor bovine papillomavirus? Genet Rolecular Res 7: 1119-1126.
19Campos S, Melo T, Assaf S, Araldi R, Mazzuchelli-de-Souza J, Sircili M, et al. (2013) Chromosome aberrations in cells infected with bovine papillomavirus: comparing cutaneous papilloma, esophagus papilloma, and urinary bladder lesion cells. ISRN Oncol 2013: 910849.
20Melo TC, Diniz N, Campos SRC, Ferraz OP, Lindsey CJ, Rieger TT, et al.(2011) Cytogenetic studies in peripheral blood of bovines afflicted by papillomatosis. Vet Comp Oncol 9: 269-274.
21Diniz N, Melo T, Santos J, Mori E, Brandão P, Richtzenhain L, et al.(2009) Simultaneous presence of bovine papillomavirus in blood and in short-term lymphocyte cultures from dairy cattle in Pernambuco, Brazil. Genet Mol Res8: 1474-1480.
22Simões R, Barth O (2016) Chromosome aberrations as a biomarker for genomic instability in cell cultures originated from bovines, canines and equines infected with papillomavirus. Int J Appl Sci Biotechnol 4 :104-112.
23Warburg O (1953) On the origin of cancer cells. Science 123:309-14.
24 Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029-1033.
25Ferreira LMR (2010) Cancer metabolism: the Warburg effect today. Exp Mol Pathol 89: 37 2-80.
26Hanahan D, Weinberg R (2011) Hallmarks of cancer: the next generation. Cell 144: 646-74.
27Lu J, Tan M, Cai Q (2015) The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 356: 156-164.
28Cuninghame S, Jackson R, Zehbe I (2014) Hypoxia-inducible factor 1 and its role in viral carcinogenesis. Virology 456-457: 370-383.
29 Reczek C, Chandel N (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8-13.
30Garber K (2004) Energy boost: the Warburg effect returns in a new theory of cancer. J Natl Cancer Inst 96:1805-1806.
31Lu H, Forbes R a, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277: 23111-23115.
32Dixit D, Sharma V, Ghosh S, Koul N, Mishra PK, Sen E (2009) Manumycin inhibits STAT3, telomerase activity, and growth of glioma cells by elevating intracellular reactive oxygen species generation. Free Radic Biol Med 47: 364-374.
33 Demaria M, Giorgi C, Lebiedzinska M, Esposito G, D’angeli L, Bartoli A, et al.(2010) A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging 2: 823-842.
34Wang B, Hsu SH, Frankel W, Ghoshal K, Jacob ST (2012) Stat3-mediated activation of microRNA-23a suppresses gluconeogenesis in hepatocellular carcinoma by down-regulating Glucose-6-phosphatase and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha. Hepatology 56: 186-197.
35De-Sá-Júnior P, Câmara D, Costa A, Ruiz J, Levy D, et al. (2016) Apoptotic effect of eugenol envolves G2/M phase abrogation accompanied by mitochondrial damage and clastogenic effect on cancer cell in vitro. Phytomedicine 23: 725-735.
36Araldi R, Giovanni D, Melo T, Diniz N, Mazzuchelli-de-Souza J, et al. (2004) Bovine papillomavirus isolation by ultracentrifugation. J Virol Methods 208: 119-124.
37Borzacchiello G, Ambrosio V, Roperto S, Poggiali F, Tsirimonakis E, et al. (2003) Bovinepapillomavirus type 4 in oesophageal papillomas of cattle from the South of Italy. J Comp Pathol 128: 203-206.
38Campo M, Coggins L (1982) Molecular cloning ofbovine papillomavirus genomes and comparison of their sequence homologies by heteroduplex mapping. J Gen Virol 63: 255-264.
39Aghaeepour N, Finak G, Hoos H, Mosmann T, Brinkman R, et al. (2013) Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 10: 228-238.
40Darzynkiewicz Z, Bedner E, Smolewski P (2001) Flow cytometry in analysis of cell cycle and apoptosis. Semin Hematol 38: 179-193.
41Jayat C, Ratinaud M (1993) Cell cycle analysisby flow cytometry: principles and applications. Biol Cell 78:15-25.
42Nunez R (2001) DNA measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol 3: 67-70.
43Mazzuchelli-de-Souza J, Carvalho R, Ruiz R, Melo T, Araldi R, et al.(2013) Expression and in silico analysis of the recombinant bovine papillomavirus E6 protein as a model for viral oncoproteins studies. Biomed Res Int 2013: 421398.
44Araldi R, Mazzuchelli-de-souza J, Modolo D, Souza E, Melo T, et al. (2015) Mutagenic potential of Bos taurus papillomavirus type 1 E6 recombinant protein : First description. Biomed Res Int 2015:1-15
45Araldi R, de Melo T, Mendes T, De-Sá-Júnior P, Nozima B, et al. (2015) Using the comet and micronucleus assays for genotoxicity studies: A review. Biomed Pharmacother 72: 74-82.
46Poli V, Camporeale A (2015) STAT3-Mediated Metabolic Reprograming in Cellular Transformation and Implications for Drug Resistance. Front Oncol 5:1-9.
47Chan L, Yim E, Choo A (2012) Normalized median fluorescence: An alternative flow cytometry analysis method for tracking human embryonic stem cell states during differentiation. Tissue Engineering: Methods 19:156-165.
48Herzenberg L, Tung J, Moore W, Herzenberg L, Parks D (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7: 681-685.
49Araldi R, Carvalho R, Melo T, Diniz N, Sant’Ana T, et al. (2014) Bovinepapillomavirus in beef cattle : first description of BPV-12 and putative type BAPV8 in Brazil. Genet Mol Res 13: 5644-5653.
50Melo T, Carvalho R, Mazzucchelli-de-Souza J, Diniz N, Vasconcelos S, Assaf S, et al. (2014) Phylogenetic classification and clinical aspects of a new putative Deltapapillomavirus associated with skin lesions in cattle. Genet Mol Res13: 2458-2469.
51 Araldi R, Melo T, Neves A, Spadacci-Morena D, Magnelli R, et al. (2015) Hyperproliferative action of bovine papillomavirus (BPV): Genetics and histopathological aspects. Genet Mol Res 14: 12942-12954.
52Carvalho R, Sakata S, Giovanni D, Mori E, Brandão P, et al. (2013) Bovine papillomavirus in Brazil: detection of coinfection of unusual types by a PCR-RFLP method. Biomed Res Int 2013: 270898.
53Borzacchiello G, Russo V, Gentile F, Roperto F, Venuti A, et al. (2006) Bovine papillomavirus E5 oncoprotein binds to the activated form of the platelet-derived growth factor beta receptor in naturally occurring bovine urinary bladder tumours. Oncogene25: 1251-1260.
54Wilson AD, Hicks C (2016) Both tumour cells and infiltrating T-cells in equine sarcoids express FOXP3 associated with an immune-supressed cytokine microenvironment. Vet Res 47: 55.
55Hauk G, Berger J (2016) The role of ATP-dependent machines in regulating genome topology. Curr Opin Struct Biol 36: 85-96
56Choi J, Lee K, Zheng Y, Yamaga A, Lai M, et al. (2004) Reactive oxygen species suppress hepatitis C virus RNA replication in human hepatoma cells. Hepatology 39: 81-9.
57Gruhne B, Sompallae R, Marescotti D, Kamranvar S, Gastaldello S, et al. (2009) The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci USA 106: 2313-2318.
58Yen Y, Chen H, Lin Y, Shieh C, Wu-Hsieh B (2008) Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol 82: 12312-12324.
59Wake M, Watson C (2015) STAT3 the oncogene - still eluding therapy? FEBS J 282: 2600-2611.
60Williams V, Brichler S, Khan E, Chami M, Dény P, et al. (2012) Large hepatitis delta antigen activates STAT-3 and NF-kB via oxidative stress. J Viral Hepat 19: 744-753.