1. Palumbo A, Anderson K (2011) Multiple myeloma. N Engl J Med 364: 1046-60.
  2. Murray MY, Rushworth SA, Zaitseva L, Bowles KM, Macewan DJ (2013) Attenuation of dexamethasone-induced cell death in multiple myeloma is mediated by miR-125b expression. Cell Cycle 12: 2144-53.
  3. Boccadoro M, Morgan G, Cavenagh J (2005) Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy. Cancer Cell Int 5: 1-18.
  4. Martiniani R, Di Loreto V, Di Sano C, Lombardo A, Liberati AM (2012) Biological activity of lenalidomide and its underlying therapeutic effects in multiple myeloma. Adv Haematol 2012: 842945-56.
  5. Stewart AK, Jacobus S, Fonseca R, Weiss M, Callander NS (2015) Chanan-Khan AA et al. Melphalan, prednisone, and thalidomide vs melphalan, prednisone, and lenalidomide (ECOG E1A06) in untreated multiple myeloma. Blood 126: 1294-301.
  6. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR (2008) Improved survival in multiple myeloma and the impact of novel therapies. Blood 111: 2516–20.
  7. Zrieki A, Farinotti R, Buyse M (2008) Cyclooxygenase inhibitors down regulate P-glycoprotein in human colorectal caco-2 cell line. Pharm. Res 25: 1991-201.
  8. Vitale P, Scilimati A, Perrone MG (2015) Update on SAR Studies Toward New COX-1 Selective Inhibitors. Curr. Med. Chem. 22: 4271-92.
  9. Perrone MG, Scilimati A, Simone L, Vitale P (2010) Selective COX-1 Inhibition: A Therapeutic Target to be Reconsidered. Curr Med Chem 17: 3769-805.
  10. Vitale P, Panella A, Scilimati A, Perrone MG (2016) COX-1 inhibitors: Beyond Structure Towards Therapy. Med Rev Res 36: 641-71.
  11. Williams TJ, Peck MJ (1977) Role of prostaglandin-mediated vasodilatation in inflammation. Nature 270: 530-2.
  12. Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS (2002) Prostaglandin E2, transactivates EGF receptor: A novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 8: 289-93.
  13. Calvello R, Panaro MA, Carbone ML, Cianciulli A, Perrone MG, et al. (2012) Novel selective COX-1 inhibitors suppress neuroinflammatory mediators in LPS-stimulated N13 microglial cells. Pharmacol Res 65: 137-48.
  14. Ghosh N, Chaki R, Mandal V, Mandal SC (2010) COX-2 as a Target for Cancer Chemotherapy. Pharmacol Rep 62: 233-44.
  15. Steinbach G, Lynch PM, Phillips RKS, Wallace MH, Hawk E, et al. (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342: 1946-52.
  16. Davis TW, O’ Neal JM, Pagel MD, Zweifel BS, Mehta PP, et al. (2004) Synergy between celecoxib and radiotherapy results from inhibition of cyclooxygenase-2-derived prostaglandin E2, a survival factor for tumor and associated vasculature. Cancer Res. 64: 279-85.
  17. Ramon S, Woeller CF, Phipps RP (2013) The influence of Cox-2 and bioactive lipids on hematological cancers. Curr Angiogenes 2: 135-42.
  18. Giles FJ, Kantarjian HM, Bekele BN, Cortes JE, Faderl S, et al. (2002) Bone marrow cyclooxygenase-2 levels are elevated in chronic-phase chronic myeloid leukemia and are associated with reduced survival. Br J Haematol 119: 38-45.
  19. Zetterberg E, Lundberg, L. G.; Palmblad, J. Expression of Cox-2, Tie-2 and glycodelin by megakaryocytes in patients with chronic myeloid leukaemia and polycythaemia vera. Br J Haematol 2003, 121, 497-9.
  20. Wun T, McKnight H, Tuscano JM (2004) Increased cyclooxygenase-2 (COX-2): A potential role in the pathogenesis of lymphoma. Leuk Res 28: 179-90.
  21. Ladetto M, Vallet S, Trojan A, Dell’Aquila M, Monitillo L, Rosato R, et al. (2004) Cyclooxygenase-2 (COX-2) is frequently expressed in multiple myeloma and is an independent predictor of poor outcome. Blood 105: 4784-91.
  22. Hazar B, Ergin M, Seyrek E, Erdoǧan Ş, Tuncer I, Hakverdi S (2004) Cyclooxygenase-2 (COX-2) expression in lymphomas. Leuk Lymphoma 45: 1395-99.
  23. Perrone MG, Luisi O, De Grassi A, Ferorelli S, Cormio G (2004) Translational Theragnostic of Ovarian Cancer: where do we stand? Curr. Med. Chem. 27: 5675-715
  24. Perrone MG, Malerba P, Uddin MJ, Vitale P, Panella A, Crews BC, et al. PET radiotracer [18F]-P6 selectively targeting COX-1 as a novel biomarker in ovarian cancer: Preliminary investigation. Eur. J. Med. Chem. 2014;80:562-568.
  25. Scilimati A, Ferorelli S, Iaselli MC, Miciaccia M, Pati ML, et al. (2019) Targeting COX-1 by mofezolac-based fluorescent probes for ovarian cancer detection. Eur J Med Chem 179: 16-25.
  26. Pati ML, Vitale P, Ferorelli S, Iaselli M, Miciaccia M, et al. (2019) Translational impact of novel widely pharmacological characterized mofezolac-derived COX-1 inhibitors combined with bortezomib on human multiple myeloma cell lines viability. Eur J Med Chem164: 59-76.
  27. Casalino G, Coluccia M, Pati ML, Pannunzio A, Scilimati A, Perrone MG. Intelligent Microarray Data Analysis through Non-negative Matrix Factorization to Study Human Multiple Myeloma Cell lines. Appl Sci 9: 5552-70.
  28. Ding J, Tsuboi K, Hoshikawa H, Goto R, Mori N, et al (2006) Cyclooxygenase Isozymes Are Expressed in Human Myeloma Cells but not Involved in Anti-Proliferative Effect of Cyclooxygenase Inhibitors. Mol Carcinog 45: 250-59.
  29. Umezu T, Imanishi S, Yoshizawa S, Kawana C, Ohyashiki JH, (2019) Induction of multiple myeloma bone marrow stromal cell apoptosis by inhibiting extracellular vesicle miR- 10a secretion. Blood Adv 3: 3228-40.
  30. Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, et al. (2015) A Multi- targeted Approach to Suppress Tumor-Promoting Inflammation. Semin Cancer Biol 35: S151–84.
  31. Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, et al. (2010) Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood 116: 2543-53.
  32. Moreaux J, Klein B, Bataille R, Descamps G, Maïga S, et al. (2011) A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines. Haematol 96: 574-82.
  33. Cingolani G, Panella A, Perrone MG, Vitale P, Di Mauro G, et al. (2017) Structural basis for selective inhibition of Cyclooxygenase-1 (COX-1) by diarylisoxazoles mofezolac and 3-(5- chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6). Eur J Med Chem 138: 661-68.
  34. Yuan C, Smith WLA (2015) Cyclooxygenase-2-dependent Prostaglandin E2 Biosynthetic System in the Golgi Apparatus. J Biol Chem 290: 5606-20.
  35. International Myeloma Working Group (2003) Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br. J. Haematol. 121:749-57.
  36. Leone P, Di Lernia G, Solimando AG, Cicco S, Saltarella I, et al. (2018) Bone marrow endothelial cells sustain a tumor-specific CD8+ T cell subset with suppressive function in myeloma patients. Oncoimmunology 8: e1486949-61.
  37. Calvello R, Lofrumento DD, Perrone MG, Cianciulli A, Salvatore, R. et al. (2017) Highly selective cyclooxygenase-1 inhibitors P6 and mofezolac counteract inflammatory state both in vitro and in vivo models of neuroinflammation. Front. Neurol. 8: 251-61.
  38. Riganti C, Contino M, Guglielmo S, Perrone MG, Salaroglio IC, et al. (2019) Design, Biological Evaluation and Molecular Modelling of Tetrahydroisoquinoline Derivatives: Discovery of A Potent P-glycoprotein Ligand Overcoming Multi-Drug Resistance in Cancer Stem Cells. J Med Chem 62: 974-86.
  39. Contino M, Guglielmo S, Perrone MG, Giampietro R, Rolando B, et al. (2018) New tetrahydroisoquinoline-based P-glycoprotein modulators: decoration of the biphenyl core gives selective ligands. Medchemcomm 9: 862-69.
  40. Capparelli E, Zinzi L, Cantore M, Contino M, Perrone MG, et al. (2014) SAR Studies on Tetrahydroisoquinoline Derivatives: The Role of Flexibility and Bioisosterism to Raise Potency and Selectivity toward P-Glycoprotein. J Med Chem 57: 9983-94.
  41. Perrone MG, Vitale P, Ferorelli S, Boccarelli A, Coluccia M, et al. (2017) Effect of mofezolac-galactose distance in conjugates targeting cyclooxygenase (COX)-1 and CNS GLUT-1 carrier. Eur J Med Chem 141: 404-16.
  42. Colabufo NA, Contino M, Cantore M, Capparelli E, Perrone MG, et al. (2013) Naphthlenyl derivatives for hitting P-gp/MRP1/BCRP transporters. Bioorg Med Chem 21: 1324-32.
  43. Castells M, Thibault B, Delord JP, Couderc B (2012) Implication of tumor microenvironment in chemoresistance: Tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci 13: 9545–75.
  44. Liang X, Song E (2020) The role of bone marrow stromal cells in blood diseases and clinical significance as a crucial part of the hematopoietic microenvironment. Annals of Blood 5: 1-10.
  45. Markovina S, Callander NS (2010) Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-κB activity in myeloma cells. Mol Cancer 9: 176-89.
  46. Miciaccia M, Belviso BD, Iaselli M, Cingolani G, Ferorelli S, et al. (2020) Three- dimensional structure of human cyclooxygenase (hCOX)-1. Sci Rep 2020.
  47. Kiefer JR, Pawiitz JL, Moreland KT, Stegeman RA, Hood WF, et al. (2000) Structural insights into the stereochemistry of the cyclooxygenase reaction. Nature 405: 97-101.
  48. Meads MB, Hazlehurst LA, Dalton WS (2008) The Bone Marrow Microenvironment as a Tumor Sanctuary and Contributor to Drug Resistance. Clin Cancer Res 14: 2519-26.
  49. Perrone MG, Santandrea E, Scilimati A, Tortorella V, Capitelli F, et al. (2004) Baker’s yeast-mediated reduction of ethyl 2-(4-chlorophenoxy)-3- oxoalkanoates intermediates for potential PPARα ligands Tetrah. Asymm. 15: 3501-10.
  50. Vitale P, D’Introno C, Perna F, Perrone MG, Scilimati A. (2013) Kluyveromyces marxianus CBS 6556 growing cells as a new biocatalyst in the asymmetric reduction of substituted acetophenones. Tetr. Asymm. 24: 389-94.
  51. Catalano A, Carocci A, Corbo F, Franchini C, Muraglia M, et al. (2008) Constrained analogues of tocainide as potent skeletal muscle sodium channel blockers towards the development of antimyotonic agents. Eur. J. Med. Chem. 43: 2535-40.
  52. Di Nunno L, Vitale P, Scilimati A, Simone L, Capitelli F, (2007) Stereoselective dimerization of 3-arylisoxazoles to cage-shaped bis-β-lactams syn 2,6-diaryl-3,7-diazatricyclo[4.2.0.02,5]octan-4,8-diones induced by hindered lithium amides. Tetrahedron 63:12388-395.
  53. Di Nunno L, Scilimati A, Vitale P, (2002) Regioselective synthesis and side-chain metallation and elaboration of 3-aryl-5-alkylisoxazoles. Tetrahedron 58: 2659-65.
  54. De Luca A. Talon S., De Bellis M, Desaphy J-F, Lentini G, et al. (2003) Optimal requirements for high affinity and use-dependent block of skeletal muscle sodium channel by N-benzyl analogs of tocainide-like compounds. Mol. Pharmacol. 64: 932-45.
  55. Di Nunno L, Scilimati A (1986) Decomposition of arylazides by THF/n-butyllithium-II-isolation of 1-aryl-4,5-dihydro-5-hydroxy-1h-1,2,3-triazoles. Tetrahedron 42:3913-39.