1. GR Martin (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78: 7634-8.
  2. JA Thomson, J Itskovitz-Eldor, SS Shapiro, MA Waknitz, JJ Swiergiel, et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-7.
  3. JE Visvader, H Clevers (2016) Tissue-specific designs of stem cell hierarchies. Nat Cell Biol 18: 349-55.
  4. R Dresser (2010) Stem cell research as innovation: expanding the ethical and policy conversation. J Law Med Ethics 38: 332-41.
  5. HL Thompson, JO Manilay (2011) Embryonic stem cell-derived hematopoietic stem cells: challenges in development, differentiation, and immunogenicity. Curr Top Med Chem 11: 1621-37.
  6. Z Storchova (2016) Too much to differentiate: aneuploidy promotes proliferation and teratoma formation in embryonic stem cells. EMBO J 35: 2265-7.
  7. H Stachelscheid, A Wulf-Goldenberg, K Eckert, J Jensen, J Edsbagge, et al. (2013) Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors, J Tissue Eng Regen Med 7: 729-41.
  8. K English, KJ Wood (2011) Immunogenicity of embryonic stem cell-derived progenitors after transplantation, Curr Opin Organ Transplant 16: 90-5.
  9. P Menasché, V Vanneaux, A Hagège, A Bel, B Cholley, et al. (2018) Transplantation of Human Embryonic Stem Cell–Derived Cardiovascular Progenitors for Severe Ischemic Left Ventricular Dysfunction, Journal of the American College of Cardiology 71: 429-38.
  10. D Orlic, J Kajstura, S Chimenti, I Jakoniuk, SM Anderson, et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410: 701-5.
  11. EC Perin, JT Willerson, CJ Pepine, TD Henry, SG Ellis, et al. (2012) Cardiovascular Cell Therapy Research Network (CCTRN), Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307: 1717-26.
  12. M Al-Nbaheen, R Vishnubalaji, D Ali, A Bouslimi, F Al-Jassir, et al. (2013) Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev Rep 9: 32-43.
  13. MS Khubutiya, AV Vagabov, AA Temnov, AN Sklifas (2014) Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy 16: 579-85.
  14. JH van Berlo, O Kanisicak, M Maillet, RJ Vagnozzi, J Karch, et al. (2014) c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509: 337-41.
  15. CI Civin, LC Strauss, C Brovall, MJ Fackler, JF Schwartz, et al. (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133: 157-65.
  16. DS Krause, MJ Fackler, CI Civin, WS May (1996) CD34: structure, biology, and clinical utility. Blood 87: 1-13.
  17. CI Civin, G Almeida-Porada, MJ Lee, J Olweus, LW Terstappen, et al. (1996) Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood 88: 4102-9.
  18. G Herbein, H Sovalat, E Wunder, M Baerenzung, J Bachorz, et al. (1994) Isolation and identification of two CD34+ cell subpopulations from normal human peripheral blood. Stem Cells 12: 187-97.
  19. LB To, PG Dyson, CA Juttner (1986) Cell-dose effect in circulating stem-cell autografting. Lancet 2: 404-5.
  20. A Debecker, P Henon, M Lepers, JC Eisenmann, J Selva (1986) Collection of circulating stem cells during remission after chemotherapy in acute leukemia. Nouv Rev Fr Hematol 28: 287-92.
  21. PR Henon, A Butturini, RP Gale (1991) Blood-derived haematopoietic cell transplants: blood to blood?. Lancet 337: 961-3.
  22. P Hénon, H Sovalat, M Becker, Y Arkam, M Ojeda-Uribe, et al. (1998) Primordial role of CD34+ 38- cells in early and late trilineage haemopoietic engraftment after autologous blood cell transplantation. Br J Haematol 103: 568-81.
  23. T Asahara, T Murohara, A Sullivan, M Silver, R van der Zee, et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964-7.
  24. S Pasquet, H Sovalat, P Hénon, N Bischoff, Y Arkam, et al. (2009) Long-term benefit of intracardiac delivery of autologous granulocyte–colony-stimulating factor-mobilized blood CD34+ cells containing cardiac progenitors on regional heart structure and function after myocardial infarct. Cytotherapy 11: 1002-15.
  25. MY Gordon, N Levicar, M Pai, P Bachellier, I Dimarakis, et al. (2006) Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor. Stem Cells 24: 1822-30.
  26. T Matsumoto, R Kuroda, Y Mifune, A Kawamoto, T Shoji, et al. (2008) Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone 43: 434-9.
  27. H Iwasaki, A Kawamoto, M Ishikawa, A Oyamada, S Nakamori, et al. (2006) Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 113: 1311-25.
  28. HD Theiss, R David, MG Engelmann, A Barth, K Schotten, et al. (2007) Circulation of CD34+ progenitor cell populations in patients with idiopathic dilated and ischaemic cardiomyopathy (DCM and ICM). Eur Heart J 28: 1258-64.
  29. P Hénon, M Ojeda-Uribe, Y Arkam, H Sovalat, N Bischoff, et al. (2003) Intra-cardiac reinjection of purified autologous blood CD34+ cells mobilized by G-CSF can significantly improve myocardial function in cardiac patients. Blood 102: 335a.
  30. DW Losordo, TD Henry, C Davidson, JS Lee, MA Costa, et al. (2011) Intramyocardial, Autologous CD34+ Cell Therapy for Refractory Angina. Circulation Res 109: 428–36.
  31. AA Quyyumi, EK Waller, J Murrow, F Esteves, J Galt, et al. (2011) CD34+ cell infusion after ST elevation myocardial infarction is associated with improved perfusion and is dose dependent. Am Heart J 161: 98-105.
  32. P Hénon (2020) Key Success Factors for Regenerative Medicine in Acquired Heart Diseases. Stem Cell Rev Rep 16: 441-58.
  33. H Ebelt, M Jungblut, Y Zhang, T Kubin, S Kostin, et al. (2007) Cellular cardiomyoplasty: improvement of left ventricular function correlates with the release of cardioactive cytokines. Stem Cells 25: 236-44.
  34. HJ Cho, N Lee, JY Lee, YJ Choi, M Ii, et al. (2007) Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med 204: 3257-69.
  35. MZ Ratajczak, J Ratajczak, M Kucia (2019) Very Small Embryonic-Like Stem Cells (VSELs): An Update and Future Directions. Circulation Research 124: 208-10.
  36. S Sahoo, E Klychko, T Thorne, S Misener, KM Schultz, et al. (2011) Exosomes From Human CD34 + Stem Cells Mediate Their Proangiogenic Paracrine Activity. Circulation Research 109: 724-8.
  37. M Kucia, R Reca, FR Campbell, E Zuba-Surma, M Majka, et al. (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20: 857-69.
  38. MZ Ratajczak (2017) Why are hematopoietic stem cells so ‘sexy’? on a search for developmental explanation. Leukemia 31: 1671-7.
  39. SH Kassmer, H Jin, PX Zhang, EM Bruscia, K Heydari, et al. (2013) Very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung. Stem Cells 31: 2759-66.
  40. AM Havens, H Sun, Y Shiozawa, Y Jung, J Wang, et al. (2014) Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells Dev 23: 689-701.
  41. CL Guerin, X Loyer, J Vilar, A Cras, T Mirault, et al. (2015) Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential. Thrombosis and Haemostasis 113: 1084-94.
  42. A Shaikh, P Nagvenkar, P Pethe, I Hinduja, D Bhartiya (2015) Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood. Leukemia 29: 1909-17.
  43. MZ Ratajczak, DM Shin, R Liu, K Mierzejewska, J Ratajczak, et al. (2012) Very small embryonic/epiblast-like stem cells (VSELs) and their potential role in aging and organ rejuvenation – an update and comparison to other primitive small stem cells isolated from adult tissues. Aging 4: 235-46.
  44. M Kucia, M Halasa, M Wysoczynski, M Baskiewicz-Masiuk, S Moldenhawer, et al. (2007) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21: 297-303.
  45. CL Guerin, E Rossi, B Saubamea, A Cras, V Mignon, et al. (2017) Human very Small Embryonic-like Cells Support Vascular Maturation and Therapeutic Revascularization Induced by Endothelial Progenitor Cells. Stem Cell Reviews and Reports 13: 552-60.
  46. B Dawn, S Tiwari, MJ Kucia, EK Zuba-Surma, Y Guo, et al. (2008) Transplantation of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells Attenuates Left Ventricular Dysfunction and Remodeling After Myocardial Infarction. Stem Cells 26: 1646-55.
  47. EK Zuba‐Surma, Y Guo, H Taher, SK Sanganalmath, G Hunt, et al. (2011) Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodelling after myocardial infarction. J Cellular Molecul Med 15: 1319-28.
  48. SJ Lee, SH Park, YI Kim, S Hwang, PM Kwon, et al. (2014) Adult Stem Cells from the Hyaluronic Acid-Rich Node and Duct System Differentiate into Neuronal Cells and Repair Brain Injury. Stem Cells and Development 23: 2831-40.
  49. J Ratajczak, M Wysoczynski, E Zuba-Surma, W Wan, M Kucia, et al. (2011) Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells. Experimental Hematology 39: 225-37.
  50. SH Kassmer, DS Krause (2013) Very small embryonic-like cells: Biology and function of these potential endogenous pluripotent stem cells in adult tissues: Very Small Embryonic-like Stem Cells. Molecular Reproduction and Development 80: 677-90.
  51. R Nakatsuka, R Iwaki, Y Matsuoka, K Sumide, H Kawamura, et al. (2016) Identification and Characterization of Lineage − CD45 − Sca-1 + VSEL Phenotypic Cells Residing in Adult Mouse Bone Tissue. Stem Cells and Development 25: 27-42.
  52. G D’Ippolito, S Diabira, GA Howard, P Menei, BA Roos, et al. (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117: 2971-81.
  53. G Kögler, S Sensken, JA Airey, T Trapp, M Müschen, et al. (2004) A New Human Somatic Stem Cell from Placental Cord Blood with Intrinsic Pluripotent Differentiation Potential. J Exp Med 200: 123-35.
  54. AP Beltrami, D Cesselli, N Bergamin, P Marcon, S Rigo, et al. (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood 110: 3438-46.
  55. R Lahlil, M Scrofani, R Barbet, C Tancredi, A Aries, et al. (2018) VSELs Maintain their Pluripotency and Competence to Differentiate after Enhanced Ex Vivo Expansion. Stem Cell Rev Rep 14: 510-24.
  56. H Sovalat, M Scrofani, A Eidenschenk, P Hénon (2016) Human Very Small Embryonic-Like Stem Cells Are Present in Normal Peripheral Blood of Young, Middle-Aged, and Aged Subjects. Stem Cells Int 2016: 1-8.
  57. H Sovalat, M Scrofani, A Eidenschenk, S Pasquet, V Rimelen, et al. (2011) Identification and isolation from either adult human bone marrow or G-CSF−mobilized peripheral blood of CD34+/CD133+/CXCR4+/ Lin−CD45− cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells. Experimental Hematology 39: 495-505.
  58. A Abdel-Latif, EK Zuba-Surma, KM Ziada, M Kucia, DA Cohen, et al. (2010) Evidence of mobilization of pluripotent stem cells into peripheral blood of patients with myocardial ischemia. Experimental Hematology 38: 1131-42.
  59. A Eljaszewicz, L Bolkun, K Grubczak, M Rusak, T Wasiluk, et al. (2018) Very Small Embryonic-Like Stem Cells, Endothelial Progenitor Cells, and Different Monocyte Subsets Are Effectively Mobilized in Acute Lymphoblastic Leukemia Patients after G-CSF Treatment. Stem Cells Int 2018: 1943980.
  60. CV Borlongan, LE Glover, N Tajiri, Y Kaneko, TB Freeman (2011) The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol 95: 213-28.
  61. K Grymula, M Tarnowski, K Piotrowska, M Suszynska, K Mierzejewskaet al. (2014) Evidence that the population of quiescent bone marrow-residing very small embryonic/epiblast-like stem cells (VSELs) expands in response to neurotoxic treatment. J Cell Mol Med 18: 1797-806.
  62. AV Karapetyan, YM Klyachkin, S Selim, M Sunkara, KM Ziada, et al. (2013) Bioactive lipids and cationic antimicrobial peptides as new potential regulators for trafficking of bone marrow-derived stem cells in patients with acute myocardial infarction. Stem Cells Dev 22: 1645-56.
  63. M Kucia, B Dawn, G Hunt, Y Guo, M Wysoczynski, et al. (2004) Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 95: 1191-9.
  64. W Wojakowski, M Tendera, A Michałowska, M Majka, M Kucia, et al. (2004) Mobilization of CD34/CXCR4 + , CD34/CD117 + , c-met + Stem Cells, and Mononuclear Cells Expressing Early Cardiac, Muscle, and Endothelial Markers Into Peripheral Blood in Patients With Acute Myocardial Infarction. Circulation 110: 3213-20.
  65. N Kränkel, RG Katare, M Siragusa, LS Barcelos, P Campagnolo, et al. (2008) Role of Kinin B 2 Receptor Signaling in the Recruitment of Circulating Progenitor Cells With Neovascularization Potential. Circulation Research 103: 1335-43.
  66. W Wojakowski, M Kucia, E Zuba-Surma, T Jadczyk, B Książek, et al. (2011) Very small embryonic-like stem cells in cardiovascular repair. Pharmacol Therap 129: 21-8.
  67. S Zhang, L Zhao, J Wang, N Chen, J Yan, et al. (2017) HIF-2α and Oct4 have synergistic effects on survival and myocardial repair of very small embryonic-like mesenchymal stem cells in infarcted hearts. Cell Death Dis 8: e2548.
  68. C Saucourt, S Vogt, A Merlin, C Valat, A Criquet, et al. (2019) Design and Validation of an Automated Process for the Expansion of Peripheral Blood‐Derived CD34 + Cells for Clinical Use After Myocardial Infarction. STEM CELLS Trans Med 8: 822-32.
  69. EK Zuba-Surma, M Kucia, B Dawn, Y Guo, MZ Ratajczak, et al. (2008) Bone marrow-derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. J Mol Cellular Cardiol 44: 865-73.
  70. M Tendera, W Wojakowski, W Ruz, C Ke, J Nessler, et al. (2009) Intracoronary infusion of bone marrow-derived selected CD341CXCR41 cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Europ Heart J 30: 1313-21.
  71. C Alvarez-Gonzalez, R Duggleby, B Vagaska, S Querol, SG Gomez, et al. (2013) Cord Blood Lin−CD45− Embryonic-Like Stem Cells Are a Heterogeneous Population That Lack Self-Renewal Capacity. PLoS ONE 8: e67968.
  72. MZ Ratajczak, J Ratajczak, M Suszynska, DM Miller, M Kucia, et al. (2017) A Novel View of the Adult Stem Cell Compartment From the Perspective of a Quiescent Population of Very Small Embryonic-Like Stem Cells. Circul Res 120: 166-78.
  73. MZ Ratajczak, A Bartke, Z Darzynkiewicz (2017) Prolonged Growth Hormone/Insulin/Insulin-like Growth Factor Nutrient Response Signaling Pathway as a Silent Killer of Stem Cells and a Culprit in Aging, Stem Cell Rev Rep 13: 443-53.
  74. I Fares, J Chagraoui, Y Gareau, S Gingras, R Ruel, et al. (2014) Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal, Science 345: 1509-12.
  75. K Takahashi, K Tanabe, M Ohnuki, M Narita, T Ichisaka, et al. (2007) Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 131: 861-72.
  76. J Yu, MA Vodyanik, K Smuga-Otto, J Antosiewicz-Bourget, JL Frane, et al. (2007) Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 318: 1917-20.
  77. MH Chin, MJ Mason, W Xie, S Volinia, M Singer, et al. (2009) Induced Pluripotent Stem Cells and Embryonic Stem Cells Are Distinguished by Gene Expression Signatures. Cell Stem Cell 5: 111-23.
  78. JM Polo, S Liu, ME Figueroa, W Kulalert, S Eminli, et al. (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28: 848-55.
  79. EY Kim, K Jeon, HY Park, YJ Han, BC Yang, et al. (2010) Differences between cellular and molecular profiles of induced pluripotent stem cells generated from mouse embryonic fibroblasts. Cell Reprogram 12: 627-39.
  80. S Yamanaka (2012) Induced Pluripotent Stem Cells: Past, Present, and Future. Cell Stem Cell 10: 678-84.
  81. S Masuda (2012) Risk of Teratoma Formation After Transplantation of Induced Pluripotent Stem Cells. Chest 141:1120-21.
  82. U Ben-David, N Benvenisty (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells, Nature Rev Can 11: 268-77.
  83. S Attwood, M Edel (2019) iPS-Cell Technology and the Problem of Genetic Instability—Can It Ever Be Safe for Clinical Use?. J Clin Med 8: 288.
  84. K Okita, Y Matsumura, Y Sato, A Okada, A Morizane, et al. (2011) A more efficient method to generate integration-free human iPS cells, Nat. Methods 8: 409-12.
  85. M Stadtfeld, M Nagaya, J Utikal, G Weir, K Hochedlinge (2008) Induced Pluripotent Stem Cells Generated Without Viral Integration. Science 322: 945-9.
  86. N Fusaki, H Ban, A Nishiyama, K Saeki, M Hasegawa (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B 85: 348-62.
  87. K Woltjen, IP Michael, P Mohseni, R Desai, M Mileikovsky, et al. (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458: 766-70.
  88. F Jia, KD Wilson, N Sun, DM Gupta, M Huang, et al. (2010) A nonviral minicircle vector for deriving human iPS cells. Nature Methods 7: 197-9.
  89. D Kim, CH Kim, JI Moon, YG Chung, MY Chang, et al. (2009) Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell Stem Cell 4: 472-6.
  90. L Warren, PD Manos, T Ahfeldt, YH Loh, H Li, et al. (2010) Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell 7: 618-30.
  91. N Miyoshi, H Ishii, H Nagano, N Haraguchi, DL Dewi, et al. (2011) Reprogramming of Mouse and Human Cells to Pluripotency Using Mature MicroRNAs. Cell Stem Cell 8: 633-8.
  92. Y Shi, H Inoue, JC Wu, S Yamanaka (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16: 115-30.
  93. M Ieda, JD Fu, P Delgado-Olguin, V Vedantham, Y Hayashi, et al. (2010) Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors. Cell 142: 375-86.
  94. R Wada, N Muraoka, K Inagawa, H Yamakawa, K Miyamoto, et al. (2013) Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proceedings of the National Academy of Sciences 110: 12667-72.
  95. YJ Nam, K Song, X Luo, E Daniel, K Lambeth, et al. (2013) Reprogramming of human fibroblasts toward a cardiac fate. Proceedings of the National Academy of Sciences 110: 5588-93.
  96. K Song, YJ Nam, X Luo, X Qi, W Tan, et al. (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485: 599-604.
  97. H Hashimoto, Z Wang, GA Garry, VS Malladi, GA Botten, et al. (2019) Cardiac Reprogramming Factors Synergistically Activate Genome-wide Cardiogenic Stage-Specific Enhancers. Cell Stem Cell 25: 69-86.e5.
  98. N Cao, Y Huang, J Zheng, CI Spencer, Y Zhang, et al. (2016) Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352: 1216-20.
  99. X Yang, L Pabon, CE Murry (2014) Engineering Adolescence: Maturation of Human Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation Res 114: 511-23.
  100. E Giacomelli, V Meraviglia, G Campostrini, A Cochrane, X Cao, et al. (2020) Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell 26: 862-79.e11.
  101. M Sarikhani, JC Garbern, S Ma, R Sereda, J Conde, et al. (2020) Sustained Activation of AMPK Enhances Differentiation of Human iPSC-Derived Cardiomyocytes via Sirtuin Activation. Stem Cell Rep 15: 498-514.
  102. T Kawamura, S Miyagawa, S Fukushima, A Maeda, N Kashiyama, et al. (2016) Cardiomyocytes Derived from MHC-Homozygous Induced Pluripotent Stem Cells Exhibit Reduced Allogeneic Immunogenicity in MHC-Matched Non-human Primates. Stem Cell Rep 6: 312-20.
  103. Y Shiba, T Gomibuchi, T Seto, Y Wada, H Ichimura, et al. (2016) Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538: 388-91.
  104. M Kawamura, S Miyagawa, K Miki, A Saito, S Fukushima, et al. (2012) Feasibility, Safety, and Therapeutic Efficacy of Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Sheets in a Porcine Ischemic Cardiomyopathy Model. Circulation 126: S29-37.
  105. Y Jiang, XL Lian (2020) Heart regeneration with human pluripotent stem cells: Prospects and challenges. Bioactive Materials 5: 74-81.
  106. JJH Chong, X Yang, CW Don, E Minami, YW Liu, et al. (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510: 273-7.
  107. JJH Chong, CE Murry (2014) Cardiac regeneration using pluripotent stem cells—Progression to large animal models. Stem Cell Res 13: 654-65.
  108. S Kobold, A Guhr, N Mah, N Bultjer, S Seltmann, et al. (2020) A Manually Curated Database on Clinical Studies Involving Cell Products Derived from Human Pluripotent Stem Cells. Stem Cell Rep 15: 546-55.
  109. A Tachibana, MR Santoso, M Mahmoudi, P Shukla, L Wang, et al. (2017) Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured Myocardium. Circulation Res 121.
  110. PJ Kim, M Mahmoudi, X Ge, Y Matsuura, I Toma, et al. (2015) Direct Evaluation of Myocardial Viability and Stem Cell Engraftment Demonstrates Salvage of the Injured Myocardium. Circulation Res 116.
  111. SG Ong, BC Huber, W Hee Lee, K Kodo, AD Ebert, et al. (2015) Microfluidic Single-Cell Analysis of Transplanted Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes After Acute Myocardial Infarction. Circulation 132: 762-71.
  112. X Jiang, Z Yang, M Dong (2020) Cardiac repair in a murine model of myocardial infarction with human induced pluripotent stem cell-derived cardiomyocytes, Stem Cell Res Ther 11.
  113. M Adamiak, G Cheng, S Bobis-Wozowicz, L Zhao, S Kedracka-Krok, et al. (2018) Induced Pluripotent Stem Cell (iPSC)–Derived Extracellular Vesicles Are Safer and More Effective for Cardiac Repair Than iPSCs. Circulation Res 122: 296-309.
  114. D Cyranoski (2018) ‘Reprogrammed’ stem cells approved to mend human hearts for the first time. Nature 557: 619-20.