1. J  Hachmann, R, Olivares Amaya, S Atahan-Evrenk, C Amador Bedolla, RS Sanchez Carrera, et al. (2011) The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid, J Phys Chem Lett 2: 2241-51.
  2. C Draxl, M Scheffler, NOMAD (2018) The FAIR Concept for Big-Data-Driven Materials Science, Invited Review for MRS Bull 43: 676-82.
  3. JP Correa Baena, K Hippalgaonkar, J van Duren, S Jaffer, VR Chandrasekhar, et al. (2018) Accelerating materials development via automation, machine learning, and high-performance computing, Joule 2: 1410-20.
  4. Materials Genome Initiative for Global Competitiveness (2011).
  5. B Blaiszik, K Chard, J Pruyne, R Ananthakrishnan, S Tuecke, et al. (2016) The materials data facility: data services to advance materials science research, Jom. 68: 204-52.
  6. D Gunter, S Cholia, A Jain, M Kocher, K Persson, et al. (2012) Community accessible datastore of high-throughput calculations: experiences from the 5Materials Project, In 2012 SC Companion: High Performance Computing, Networking Storage and Analysis IEEE 1244-51.
  7. G Pizzi, A Cepellotti, R Sabatini, N  Marzari, B Kozinsky, AiiDA: automated interactive infrastructure and database for computational science, Comput  Mater  Sci 111: 218-30.
  8. S Kirklin, JE Saal, B Meredig, A Thompson, JW Doak, et al. (2015) The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies, NPJ Comput  Mat 1: 15010-25.
  9. T Mayeshiba, H Wu, T Angsten, A Kaczmarowski, Z Song, et al. (2017) The MAterials Simulation Toolkit (MAST) for atomistic modeling of defects and diffusion, Comput  Mater  Sci 126: 90-102.
  10. AH Larsen, JJ Mortensen, J Blomqvist, IE Castelli, R Christensen, et al. (2017 ) The atomic simulation environment—a Python library for working with atoms, J Phys Conden  Matt 29: 273002-32.
  11. M Alvarez Moreno, C de Graaf, N Lopez, F Maseras, JM Poblet, et al (2014)  Managing the computational chemistry big data problem: the ioChem-BD platform, J Chem  Inf  Model 55: 95-103.
  12. JE Saal, S Kirklin, M Aykol, B Meredig, C Wolverton (2013)  Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD), Jom. 65: 1501-09.
  13. A Jain, SP Ong, G Hautier, W Chen, WD Richards, et al. (2013) The Materials Project: A materials genome approach to accelerating materials innovation, APL Mat 1: 011002-13.
  14. A Jain, G Hautier, CJ Moore, Shyue PO, Christopher C, et al. (2011) A high-throughput infrastructure for density functional theory calculations, Comput. Mater  Sci 50: 2295-310.
  15. A Jain, SP Ong, W Chen, B Medasani, X Qu, et al. (2015) FireWorks: a dynamic workflow system designed for high-throughput applications, Concurrency Computat.: Pract  Exper 27: 5037-59.
  16. S Curtarolo, W Setyawan, GLW Hart, M Jahnatek, RV Chepulskii, et al. (2012)  AFLOW: an automatic framework for high-throughput materials discovery, Comput  Mater  Sci 58: 218-26.
  17. F Rose, C Toher, E Gossett, C Oses, MB Nardelli, et al. (2017)  AFLUX: The LUX materials search API fr the AFLOW data repositories, Comput  Mater  Sci 137: 362-70.
  18. M Scheffler, C Draxl (2014)  The Garching Computing Center of the Max-Planck Society, The NoMaD Repository.
  19. SP Ong, WD Richards,  A  Jain, G  Hautier,  M Kocher, et al. (2013) Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis, Comput  Mater  Sci 68: 314-319.
  20. SP Ong, S Cholia, A Jain, M Brafman, D Gunter, et al. (2015) The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on Representational State Transfer (REST) principles, Comput Mater Sci 97: 209-15.
  21. X Yang, Z Wang, X Zhao, J Song, M Zhang, et al. MatCloud: A high-throughput computational infrastructure for integrated management of materials simulation, data and resources, Comput Mater Sci 146: 319-33.
  22. CE Calderon, JJ Plata, C Toher, C Oses, O Levy, et al. (2015) The AFLOW standard for high-throughput materials science calculations, Comput  Mater  Sci 108: 233-38.
  23. A Belsky, M Hellenbrandt, VL Karen, P Luksch (2002) New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design, Acta Crystallogr B 58: 364-69.
  24. S Haastrup, M Strange, M Pandey, T Deilmann, PS Schmidt, et al. (2018) The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals, 2D Mater 5: 042002-37.
  25. G Kresse, J Furthm uller (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys Rev B 54: 11169-86.
  26. The Vienna Ab initio Simulation Package: atomic scale materials modelling from first principles.
  27. Y Hinuma, G Pizzi, Y Kumagai, F Oba, I Tanaka (2017) Band structure diagram paths based on crystallography, Comput Mater Sci 128: 140-84.
  28. W Setyawan, S Curtarolo (2010) High-throughput electronic band structure calculations: Challenges and tools, Comput Mater Sci 49: 299-312.
  29. S Plimpton (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys 117: 1-19.
  30. LAMMPS Molecular Dynamics Simulator.
  31. The open source CFD toolbox, https://www.openfoam.com.
  32. D Talia (2013) Workflow systems for science: Concepts and tools, ISRN Software Engineering 2013: 404525-39.
  33. K Mathew, JH Montoya, A Faghaninia, S Dwarakanath, M Aykol, et al. (2017) Atomate: A high-level interface to generate, execute, and analyze computational materials sc
  34. ience workflows, Comput Mater Sci 139: 140-152.
  35. L Ward, A Dunn, A Faghaninia, NE Zimmermann, S Bajaj, et al. (2018) Matminer: An open source toolkit for materials data mining, Comput Mater Sci 152: 60-9.
  36. E Gossett, C Toher, C  Oses, O Isayev, F Legrain, et al. (2018) AFLOW-ML: A RESTful API for machine-learning predictions of materials properties, Comput Mater Sci 152: 134-45.