Sample name
Eg (eV)
-1 K (min ) a
MB
--
4*10-8
Z
3.20
0.0014
MZ
2.07
0.0112
MZT
1.90
0.02317
MZR
1.89
0.0359
Table 1: The band gap energy (Eg) values and kinetic parameters for photocatalytic activities of Z, MZ, MZT, and MZR NCs
Photocatalyst
Weight of catalyst (g/L)
Concentration of MB (ppm)
Time(h)
Degradation (%)
Ref.
ZnS-TiO2/RGO
0.4
20
2
90
[56]
WO3/GO
0.5
3
1.2
82
[57]
Pt/WO3/GO
94
Fe3O4 /CdWO4 +H2O2
0.1
32
[58]
Fe3O4 /CdWO4 /PrVO4 + H2O2
68
Fe3O4/ZnWO4/CeVO4 +H2O2
0.6
25
84
[59]
Pt/ZnO-MWCNT
100
1
74
[60]
MZG3
1.5
95
Our work
Table 2: Photocatalytic degradation of MB under Visible Light with Various Photocatalysts
Scheme 1: Schematic Synthesis of Fe3O4 /ZnO/ rGO nanocomposites (MZR)
Scheme 2: Schematic Synthesis of Fe3O4 / ZnO /TiO2 nanocomposites (MZT)
Figure 1: XRD spectra of Z, M, MZ, MZR and MZT nanocomposites
Figure 2: FT-IR spectra of Z, M, MZ, MZR, and MZT nanocomposites
Figure 3: TEM images of Z (a), M (b), MZ (c), MZR (d) and MZT(e)
Figure 4: UV-Vis diffuse reflectance spectra of Z, MZ, MZT and MZR NCs
Figure 5: Photoluminescence spectra of Z, MZ, MZT and MZR NCs
Figure 6: Photodegradation and (b) Kinetic of MB by Z, MZ, MZT and MZR nanocomposites for 100 ppm MB under visible light
Figure 7: The MZR photocatalytic activity for degradation of organic pollutant remained stable (about 95%) throughout five consecutive cycles
Figure 8: FT-IR spectra of MZR nanocomposites before and after of photocatalytic activity
Figure 9: Schematic diagram of MB photodegradation by MZR crystalline nanocomposite under visible light
Tables at a glance
Figures at a glance