Figure 1: Experimental setup of thermal evaporation system
Miller indices |
FWHM |
FWHM(Rad) |
Theta |
Theta (Rad) |
D |
strain values |
d |
(h2+k2+l 2)1/2 |
a |
∆ |
N |
100 |
2.79940 |
0.04885 |
12.3263 |
0.2151 |
4.83692E-11 |
0.0113 |
3.606894605 |
0.5 |
1.8034 |
2.750E-10 |
1.183E+28 |
111 |
0.18108 |
0.0031 |
11.9109 |
0.2078 |
7.48897E-10 |
0.0007 |
3.730780776 |
1.5 |
5.5961 |
8.891E-11 |
3.189E+24 |
Table 1: XRD calculations of all peaks shown in Figure-4
Miller indices |
FWHM |
FWHM(Rad) |
Theta |
Theta (Rad) |
D |
strain values |
d |
(h2+k2+l2)1/2 |
a |
∆ |
N |
111 |
0.433 |
0.007 |
13.7111 |
0.2393 |
1.781 |
0.0018354 |
3.25253 |
1.5 |
4.878795 |
1.01E-10 |
1.34E+26 |
E-08 |
79 |
||||||||||
220 |
0.6298 |
0.01 |
22.7857 |
0.3976 |
1.162 |
0.0025335 |
1.99062 |
4 |
7.96248 |
5.55E-11 |
4.83E+26 |
E-08 |
65 |
||||||||||
311 |
0.576 |
0.01 |
26.9348 |
0.4701 |
1.229 |
0.0022406 |
1.70053 |
5.5 |
9.352915 |
4.42E-11 |
4.09E+26 |
E-08 |
41 |
Table 2: The XRD Calculation of all the peaks shown in Figure-5
CdSe |
ZnSe |
CdS |
CdSe |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 3: Raman Peaks of CdS, ZnSe, CdTe and CdSe
SNo |
CdS(Cu)Thicknes s |
Copperdoping (Cu) |
TotalThicknes s |
Annealing Temperature |
material type |
1 |
253nm |
5% |
258.3 |
As-Deposited |
N-type |
2 |
253nm |
5% |
258.3 |
|
P-type |
3 |
253nm |
5% |
258.3 |
|
P-type |
4 |
253nm |
5% |
258.3 |
|
P-type |
5 |
253nm |
5% |
258.3 |
|
P-type |
6 |
253nm |
5% |
258.3 |
|
P-type |
7 |
253nm |
5% |
258.3 |
|
P-type |
8 |
253nm |
5% |
258.3 |
|
P-type |
9 |
253nm |
5% |
258.3 |
|
P-type |
10 |
253nm |
5% |
258.3 |
|
P-type |
11 |
253nm |
5% |
258.3 |
|
P-type |
12 |
253nm |
5% |
258.3 |
|
P-type |
13 |
253nm |
5% |
258.3 |
|
P-type |
14 |
253nm |
5% |
258.3 |
|
P-type |
15 |
253nm |
5% |
258.3 |
|
P-type |
Table 4: Conductivity of CdS (Cu) at different temperature
SNo |
ZnSeThickness |
AnnealingTemperature |
materialtype |
1 |
501nm |
As-Deposited |
N-type |
2 |
501nm |
500C |
N-type |
3 |
501nm |
750C |
N-type |
4 |
501nm |
1000C |
N-type |
5 |
501nm |
1250C |
N-type |
6 |
501nm |
1500C |
N-type |
7 |
501nm |
1750C |
N-type |
8 |
501nm |
2000C |
N-type |
9 |
501nm |
2250C |
N-type |
10 |
501nm |
2500C |
N-type |
11 |
501nm |
3000C |
N-type |
12 |
501nm |
3250C |
N-type |
13 |
501nm |
3500C |
N-type |
14 |
501nm |
3750C |
N-type |
15 |
501nm |
4000C |
N-type |
Table 5: Conductivity of ZnSe at different temperature
S. No |
CdTeThickness in each sublayer |
Annealing Temperature |
material Type |
1 |
56nm |
As-Deposited |
P-type |
2 |
56nm |
|
P-type |
3 |
56nm |
|
P-type |
4 |
56nm |
|
P-type |
S. No |
CdSe Thickness in each sublayer |
Annealing Temperature |
material Type |
1 |
28nm |
As-Deposited |
N-type |
2 |
28nm |
|
N-type |
3 |
28nm |
|
N-type |
4 |
28nm |
|
N-type |
Table 6: Conductivity of CdTe and CdSe at different temperature
Figure 1: Experimental setup of thermal evaporation system
Figure 2: Methodology for Multilayer of CdS(Cu)/ZnSe on ITO coated substrate
Figure 3: Methodology for Multilayer of CdTe/CdSe on ITO coated substrate
Figure 4: Methodology for Multilayer Deposition through Thermal Evaporation Technique
Figure 5: Combined graph of XRD spectra of all samples X, Y, and Z
Figure 6: Combined graph of XRD spectra of all samples A, B, C and D
Figure 7: CdS (Cu)/ZnSe samples' transmission spectra at 250, 300, and 400 degrees Celsius after annealing.
Figure 8: Band gaps of all the samples of CdS (Cu)/ZnSe annealed at 250, 300, and 400oc
Figure 9: Absorption, transmittance and reflectance spectra as a function of wavelength of ZnSe thin film
Figure 10: Transmission graph of all the samples of CdTe/CdSe multilayer heterostructure X, Y and Z
Figure 11: Absorption spectra of all the samples of CdTe/CdSe X, Y and Z
Figure 12: Bandgap of multilayer heterostructure of X, Y, and Z
Figure 13: Extinction coefficient of CdTe/CdSe multilayer heterostructure.
Figure 14: Absorption (A), transmittance (T) and reflectance (R) spectra as a function of wavelength of CdTe/CdSe multilayer
Figure 15: Raman spectra of CdS (Cu)/ZnSe multilayers annealed at 2500C, 3000C, 4000C and as deposited
Figure 16: Raman shift of CdS (Cu)/ZnSe multilayer heterostructure vs annealing temperature
Figure 17: Raman Bandwidth/crystal size graph of multilayer heterostructure of CdS (Cu)/ZnSe
Figure 18: CdTe/CdSe Multilayer heterostructure Raman spectra
Figure 19: Raman shift vs annealing Temperature of CdTe/CdSe multilayer heterostructure
Figure 20: Raman Bandwidth/crystal size graph of CdTe/CdSe multilayers
Figure 21: PL emission spectra of CdS (Cu)/ZnSe multilayer heterostructure
Figure 22: PL Emission spectra of CdTe/CdSe multilayer heterostructure
Figure 23: The IV characteristics PN junction of CdS (Cu)/ZnSe
Figure 24: The IV characteristics PN junction of CdTe/CdSe
Tables at a glance
Figures at a glance