1Elizalde N, Gil-Bea FJ, Ramírez MJ, Aisa B, Lasheras B, et al. (2008) Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: Effect of antidepressant treatment. Psychopharmacology (Berl) 199: 1-14.
2Mineka S, Zinbarg R (2006) A contemporary learning theory perspective on the etiology of anxiety disorders: It's not what you thought it was. Am Psychol 61: 10-26.
3Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156: 837–841.
4Wohleb ES, Powell ND, Godbout JP, Sheridan JF (2013) Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci 33: 13820-13833.
5Sen S, Nesse RM, Stoltenberg SF, Li S, Gleiberman L, et al. (2003) A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology 28: 397-401.
6Lang UE, Hellweg R, Kalus P, Bajbouj M, Lenzen KP, et al. (2005) Association of a functional BDNF polymorphism and anxiety-related personality traits. Psychopharmacology (Berl) 180: 95-99.
7Barde YA (1994) Neurotrophins: a family of proteins supporting the survival of neurons. Prog Clin Biol Res 390: 45–56.
8Lo DC (1995) Neurotrophic factors and synaptic plasticity. Neuron 15: 979–981.
9Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116-1127.
10Gould E, Tanapat P (1999) Stress and hippocampal neurogenesis. Biol Psychiatry 46: 1472–1479.
11Gould E, Tanapat P, McEwen BS, Flügge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 95: 3168–3171.
12Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD (2005) Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord 88: 79–86.
13Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160: 1516–1518.
14Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Toné S, et al. (1997) Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res 28: 103–110.
15Duman RS (2004) Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 5: 11–25.
16Banskota AH, Tezuka Y, Kadota S (2001) Recent progress in pharmacological research of propolis. Phytother Res 15: 561-571.
17Altug ME, Serarslan Y, Bal R, Kontas T, Ekici F, et al. (2008) Caffeic acid phenethyl ester protects rabbit brains against permanent focal ischemia by antioxidant action: a biochemical and planimetric study. Brain Res 1201: 135-142.
18Cengiz N, Colakoglu N, Kavakli A, Sahna E, Parlakpinar H, et al. (2007) Effects of caffeic acid phenethyl ester on cerebral cortex: structural changes resulting from middle cerebral artery ischemia reperfusion. Clin Neuropathol 26: 80-84.
19Tsai SK, Lin MJ, Liao PH, Yang CY, Lin SM, et al. (2006) Caffeic acid phenethyl ester ameliorates cerebral infarction in rats subjected to focal cerebral ischemia. Life Sci 78: 2758-2762.
20Wei X, Ma Z, Fontanilla CV, Zhao L, Xu ZC, et al. (2008) Caffeic acid phenethyl ester prevents cerebellar granule neurons (CGNs) against glutamate-induced neurotoxicity. Neuroscience 155: 1098-1105.
21Kasai M, Fukumitsu H, Soumiya H, Furukawa S (2011) Caffeic acid phenethyl ester reduces spinal cord injury-evoked locomotor dysfunction. Biomed Res 32: 1-7.
22Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacol 134: 319-329.
23Ito N, Nagai T, Yabe T, Nunome S, Hanawa T, et al. (2006) Antidepressant-like activity of a Kampo (Japanese herbal) medicine, Koso-san (Xiang-Su-San), and its mode of action via the hypothalamic-pituitary-adrenal axis. Phytomedicine 13: 658–667.
24Ito S, Nitta Y, Fukumitsu H, Soumiya H, Ikeno K, et al. (2012) Antidepressant-like activity of 10-hydroxy-trans-2-decenoic Acid, a unique unsaturated Fatty Acid of royal jelly, in stress-inducible depression-like mouse model. Evid Based Complement Alternat Med 2012: 139140.
25Gadotti VM, Bonfield SP, Zamponi GW (2012) Depressive-like behaviour of mice lacking cellular prion protein. Behav Brain Res 227: 319-323.
26Vale AL, Green S, Montgomery AM, Shafi S (1998) The nitric oxide synthesis inhibitor L-NAME produces anxiogenic-like effects in the rat elevated plus-maze test, but not in the social interaction test. J Psychopharmacol 12: 268-272.
27Bourin M, Hascoët M (2003) The mouse light/dark box test. Eur J Pharmacol 463: 55–65.
28Barbacid M (1995) Structural and functional properties of the TRK family of neurotrophin receptors. Ann NY Acad Sci 766: 442-458.
29Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10: 381-391.
30Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Ann Rev Neurosci 24: 677-736.
31Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Mem 10: 86-98.
32Apfel SC (2001) Neurotrophic factor therapy-prospects and problems. Clin Chem Lab Med 39: 351-355.
33Makino A, Iinuma M, Fukumitsu H, Soumiya H, Furukawa Y, et al. (2010) 2-Decenoic acid ethyl ester possesses neurotrophin-like activities to facilitate intracellular signals and increase synapse-specific proteins in neurons cultured from embryonic rat brain. Biomed Res 31: 379-386.
34Furukawa S (2009) Development of therapeutic drugs for depression and Alzheimer's disease. Chemical Engineering (in Japanese) 54: 18-24.
35Makino A1, Iinuma M, Fukumitsu H, Soumiya H, Furukawa Y, et al. (2013). Anxiolytic-like effect of trans-2-decenoic acid ethyl ester in stress-induced anxiety-like model mice. Biomed Res 34: 259-267.
36Kelleher RJ 3rd, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116: 467–479.
37Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5: 173–183.
38Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5: 243-251.
39Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37: 137-162.
40Wohleb ES, Powell ND, Godbout JP, Sheridan JF (2013) Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci 33: 13820-13833.
41Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB (1996) Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 93: 9090-9095.
42Bethea JR, Castro M, Keane RW, Lee TT, Dietrich WD, et al. (1998) Traumatic spinal cord injury induces nuclear factor-kappa B activation. J Neurosci 18: 3251-3260.
43Nesic O, Xu GY, McAdoo D, High KW, Hulsebosch C, et al. (2001) IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J Neurotrauma 18: 947-956.