1Choi DW (1998) Glutamate neurotoxicity and diseases of the nervous system. Neuron1:623–634.
2Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci.23:298–304.
3Atlante A, Calissano P, Bobba A, Giannattasio S, Marra E, Passarella S (2001) Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett. 497:1-5.
4Andrus PK, Fleck TJ, Gurney ME, Hall ED (1998) Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem.71: 2041-2048.
5Cicchetti F, Drouin-Ouellett J, Gross RE (2009) Environmental toxins and Parkinson's disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci 30: 475-483.
6Sugimoto K, Iadecola C (2003) Delayed effect of administration of COX-2inhibitor in mice with acute cerebral ischemia. Brain Res.960: 273-276.
7Gutierrez-Merino C, López-Sánchez C, Lagoa R, Samhan-Arias AK, Bueno C, García-Martínez V (2011) Neuroprotective actions of flavonoids. CurrentMedicinal Chemistry18: 1195-1212.
8Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci.20: 132-139.
9Beal MF (2002) Oxidatively modified proteins in aging and disease. FreeRadic Biol Med 32: 797-803.
10Praticò D, Delanty N (2000) Oxidative injury in diseases of the central nervous system: Focus on Alzheimer's disease. Am. J. Med.109: 577-585.
11Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson's disease. Front Neuroanat 9:91.doi: 10.3389/fnana.2015.00091. eCollection 2015.
12Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism, and Alzheimer's disease. Nat Rev Neurosci 20:148-160.
13Martin-Romero FJ, Garcia-Martin E, Gutierrez-Merino C (1996) Involvement of free radicals in the signaling of low-potassium induced apoptosis in cultured cerebellar granule cells. Int J Dev Biol, Suppl.1,197S-198S.
14Martin-Romero FJ, Garcia-Martin E, Gutierrez-Merino C (2002) Inhibition of the oxidative stress produced by plasma membrane NADH oxidase delays low- potassium induced apoptosis of cerebellar granule cells. J Neurochem 82: 705–715.
15Valencia A, Morán J (2001) Role of oxidative stress in the apoptotic cell death of cultured cerebellar granule cells. J Neurosci Res.64: 284–297.
16Samhan-Arias AK, Marques-da-Silva D, Yanamala N, Gutierrez-Merino C (2012) Stimulation and clustering of cytochrome b5 reductase in caveolin-rich lipid microdomains is an early event in oxidative stress-mediated apoptosis of cerebellar granule neurons. J Proteomics 75: 2934-2949.
17Mao GD, Poznansky MJ (1992) Electron spin resonance study on the permeability of superoxide radicals in lipid bilayers and biological membranes. FEBS Lett.305: 233–236.
18Herrero A, Barja G (2000) Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J. Bioenerg. Biomembr.32: 609-615.
19Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev.87: 245-313.
20Martin-Romero FJ, Gutierrez-Martin Y, Henao F, Gutierrez-Merino C (2002) The NADH oxidase activity of the plasma membrane of synaptosomes is a major source of superoxide anion and is inhibited by peroxynitrite. J Neurochem 82: 604–614.
21Samhan-Arias AK, Duarte RO, Martin-Romero FJ, Moura JJG, Gutierrez-Merino C (2008) Reduction of ascorbate free radical by the plasma membrane of synaptic terminals from rat brain. Arch. Biochem. Biophys. 469: 243–254.
22Samhan-Arias AK, Garcia-Bereguiain MA, Martin-Romero FJ, Gutierrez-Merino C (2009) Clustering of plasma membrane-bound cytochrome b5 reductase within 'lipid rafts' microdomains of the neuronal plasma membrane. Mol Cell Neurosci 40: 14–26.
23Samhan-Arias AK, López-Sánchez C, Marques-da-Silva D, Lagoa R, et al. (2016) High expression of cytochrome b5 reductase isoform 3/cytochrome b5 system in the cerebellum and pyramidal neurons of adult rat brain. Brain Struct. Funct. 221: 2147-2162.
24Percy MJ, Lappin TR (2008) Recessive congenital methemoglobinemia: cytochrome b5 reductase deficiency. British Journal of Haematology141: 298-308.
25Ewenczyk C, Leroux A, Roubergue A, Laugel V, Afenjar A, et al. (2008) Recessive hereditary methemoglobinemia, type II: delineation of the clinical spectrum. Brain 131: 760- 761.
26Leroux A, Junien C, Kaplan J, Bambenger J (1975) Generalised deficiency of cytochrome b5 reductase in congenital methemoglobinemia with mental retardation. Nature 258: 619-620.
27Toelle SP, Boltshauser E, Mössner E, Zurbriggen K, Eber S (2004) Severe neurological impairment in hereditary methemoglobinemia type 2. Eur. J.Pediatr. 163: 207–209.
28Aalfs CM, Salieb-Beugelaar GB, Wanders RJA, Mannens MMAM, Wijburg FA (2000) A case of methemoglobinemia type II due to NADH-cytochrome b5reductase deficiency: determination of the molecular basis. Hum. Mutat.16:18-22.
29Sato Y, Sagami I, Shimizu T (2004) Identification of Caveolin-1-interacting sites in Neuronal Nitric-oxide Synthase. J. Biol. Chem.279: 8827-8836.
30Marques-da-Silva D, Gutierrez-Merino C (2012) L-type voltage-operated calcium channels, N-methyl-D- aspartate receptors and neuronal nitric-oxide synthase form a calcium/redox nano-transducer within lipid rafts. Biochem. Biophys. Res. Commun. 420:257-262.
31Marques-da-Silva D, Gutierrez-Merino C (2014) Caveolin-rich lipid rafts of the plasma membrane of mature cerebellar granule neurons are microcompartments for calcium/reactive oxygen and nitrogen species cross-talk signaling. Cell Calcium 56: 108-123.
32Szabo C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology, and development of therapeutics. Nat. Rev. Drug Discov.6: 662-680.
33Bolaños JP, Almeida A, Stewart V, Peuchen S, et al. (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J. Neurochem.68: 2227-2240.
34Bolaños JP, Almeida A, Stewart V, Peuchen S, et al. (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J. Neurochem.68: 2227-2240.
35Liu D, Ling X, Wen J, Liu J (2000) The role of reactive nitrogen species in secondary spinal cord injury: formation of nitric oxide, peroxynitrite, and nitrated protein. J. Neurochem.75: 2144-2154.
36Barman S, Nayak DP (2007) Lipid Raft Disruption by Cholesterol Depletion Enhances Influenza A Virus Budding from MDCK Cells. J. Virol.81:12169-12178.
37Lu J-C, Chiang Y-T, Lin Y-C, Chang Y-T, Lu C-Y, et al. (2016) Disruption of Lipid Raft Function Increases Expression and Secretion of Monocyte Chemoattractant Protein-1 in 3T3-L1 Adipocytes. PLOS One 11: e0169005.
38Fortalezas S, Marques-da-Silva D, Gutierrez-Merino C (2018) Methyl- β- cyclodextrin impairs the phosphorylation of the β2-subunit of L-type of calcium channels and cytosolic calcium homeostasis in mature cerebellar granule neurons. International Journal of Molecular Sciences 19: 3667-3688.
39López-Nicolás JM, Rodríguez-Bonilla P, García-Carmona F (2014) Cyclodextrins and Antioxidants. Critical Reviews in Food Science and Nutrition 54: 251-276.
40Tiwari G, Tiwari R, Rai AK (2010) Cyclodextrins in delivery systems: Applications. J. Pharm. Bioallied Sci. 2: 72-79.
41Shelley RH, Babu J (2018) Role of Cyclodextrins in Nanoparticle-Based Drug Delivery Systems. Journal of Pharmaceutical Sciences107:1741-1753.
42Samhan-Arias AK, Martín-Romero FJ, Gutierrez-Merino C (2004) Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for the plasma membrane NADH oxidase activity in the commitment of apoptosis. Free Radical Biology and Medicine 37: 48-61.
43Gutierrez-Martín Y, Martin-Romero FJ, Henao F, Gutierrez-Merino C (2005) Alteration of cytosolic free calcium homeostasis SIN-1: High sensitivity of L-type Ca2+-channels to extracellular oxidative/nitrosative stress in cerebellar granule neurons. J. Neurochem. 92: 973-989.
44Fortalezas S, Marques-da-Silva D, Gutierrez-Merino C (2018) Creatine protects against cytosolic calcium dysregulation, mitochondrial depolarization and increase of reactive oxygen species production in rotenone-induced cell death of cerebellar granule neurons. Neurotoxicity Research 34:717-732.
45Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic. Biol. Med. 43: 995-1022.
46Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vasquez-Vivar J, Kalyanaraman B (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic. Biol. Med.34:1359-1368.
47Zielonka J, Hardy M, Kalyanaraman B (2009) HPLC study of oxidation products of hydroethidine in chemical and biological systems: ramifications in superoxide measurements. Free Radic. Biol. Med.46: 329-338.
48McQuade LE, Lippard SJ (2010) Fluorescent probes to investigate nitric oxide and other reactive nitrogen species in biology (truncated form: fluorescent probes of reactive nitrogen species). Curr. Opin. Chem. Biol.14: 43-49.
49Marques-da-Silva D, Samhan-Arias AK, Tiago T, Gutierrez-Merino C (2010) L- type calcium channels and cytochrome b5 reductase are components of protein complexes tightly associated with lipid rafts microdomains of the neuronal plasma membrane. J Proteomics73: 1502-1510.
50Krishna CM, Liebmann JE, Kaufman D, DeGraff W, Hahn SM, McMurry T, Mitchel JB, Russo A (1992) The catecholic metal sequestering agent 1,2- dihydroxybenzene-3,5-disulfonate confers protection against oxidative cell damage. Arch. Biochem. Biophys. 294: 98-106.
51Kim JS, Cho EW, Chung HW, Kim IG (2006) Effects of Tiron, 4,5-dihydroxy-1,3- benzene disulfonic acid, on human promyelotic HL-60 leukemia cell differentiation and death. Toxicology 223: 36-45.
52Toescu EC (1999) Activity of voltage-operated calcium channels in rat cerebellar granule neurons and neuronal survival. Neuroscience 94: 561-570.
53Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, HirataY, Nagano T (1998) Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators: Diaminofluoresceins. Anal. Chem.70: 2446-2453.
54Broillet M-C, Randin O, Chatton J-Y (2001) Photoactivation and calcium sensitivity of the fluorescent NO indicator 4,5-diaminofluorescein (DAF-2): implications for cellular NO imaging. FEBS Letters 491:227-232.
55Reynolds IJ, Hastings TG (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci.15: 3318-3327.
56Jacobs CM, Aden P, Mathisen GH, Khuong E, et al. (2006) Chicken cerebellar granule neurons rapidly develop excitotoxicity in culture. J. Neurosci. Methods 156: 129-135.
57Samhan-Arias AK, Fortalezas S, Cordas CM, Moura I, Moura JJG, Gutierrez- Merino C (2018) Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c. Redox Biology15:109-114.
58Samhan-Arias AK, Gutierrez-Merino C (2014) Purified NADH-Cytochromeb5 Reductase Is a Novel Superoxide Anion Source Inhibited by Apocynin: Sensitivity to nitric oxide and peroxynitrite. Free Radic. Biol. Med.73: 174-189.
59Zhou L, Zhu D-Y (2009) Neuronal nitric oxide synthase: Structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20: 223-230.
60Gutierrez-Merino C, Marques-da-Silva D, Fortalezas S, Samhan-AriasAK (2014) Cytosolic calcium homeostasis in neurons: Control systems, modulation by reactive oxygen and nitrogen species, and space and time fluctuations. In Heinbockel T (Ed), Neurochemistry (ISBN 980-953-307-1129-7), InTech, Rijeka (Croatia), Chapter 3, pp. 59-110.
61Schenkman JB, Jansson I (2003) The many roles of cytochrome b5.J. Pharmacol. Ther.97:139-152.
62Mulero-Navarro S, Santiago-Josefat B, Pozo-Guisado E, et al. (2003) Down‐regulation of CYP1A2 induction during the maturation of mouse cerebellar granule cells in culture: role of nitric oxide accumulation. Eur. J. Neurosci.18: 2265-2272.
63Tinel M, Berson A, Elkahwaji J, Cresteil T, Beaune P, Pessayre D (2003) Downregulation of cytochromes P450 in growth-stimulated rat hepatocytes: role of c- Myc induction and
impaired C/EBP binding to DNA. J. Hepatol. 39: 171-178.
64Moutinho M, Nunes MJ, Rodrigues E (2016) Cholesterol
24-hydroxylase: Brain cholesterol metabolism and beyond.
Biochem. Biophys. Acta –Molecular and Cell Biology of Lipids1861:
1911-1920.
65Schilling K, Schmidt HH, Baader SL (1994) Nitric oxide
synthase expression reveals compartments of cerebellar granule
cells and suggests a role for mossy fibers in their development.
Neuroscience 59: 893-903.
66Li M, Wang L, Peng Y, Wang JC, Zhou LH (2010)
Knockdown of the neuronal nitric oxide synthase gene retard
the development of the cerebellar granule neurons in vitro. Dev.
Dyn. 239: 474-481.
67Kelm M, Dahmann R, Wink D, Feelisch M (1997) The
nitric oxide/superoxide assay. Insights into the biological chemistry
of the NO/O2
·- interaction. J. Biol. Chem. 272: 9922-9932.
68Martín-Romero FJ, Gutiérrez-Martín Y, Henao F,
Gutierrez-Merino C (2004) Fluorescence measurements of
steady state peroxynitrite production upon SIN-1 decomposition:
NADH versus dihydro dichlorofluorescein and
dihydrorhodamine123.J. Fluorescence 14:17-23.
69Bao F, Liu D (2002) Peroxynitrite generated in the rat
spinal cord induces neuron death and neurological deficits. Neuroscience115:
839-849.