1Witte F (2010) The history of biodegradable magnesium implants: A review. Acta Biomaterialia 5: 1680-1692.
2Kaplan EG, Kaplan GS, Kaplan DM, Kaplan RK (1984) History of implants. Clinics in Podiatry 1: 3-10.
3Carter DR, Beaupre GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clinical Orthopaedics and Related Research 355: 41-S55.
4Liu X, Niebur GL (2008) Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomechanics and Modeling in Mechanobiology 7: 335–344.
5Kienapfel H, Sprey C, Wilke A, Griss P (1999) Implant fixation by bone ingrowth. Journal of Arthroplasty 14: 355-368.
6Bishop JA, Palanca AA, Bellino MJ, Lowenberg DW (2012) Assessment of compromised fracture healing. Journal of the American Academy of Orthopaedic Surgeons 20: 273-282.
7Aro HT, Alm JJ, Moritz N, Makinen TJ, Lankinen P (2012) Low BMD affects initial stability and delays stem osseointegration in cementless total hip arthroplasty in women: a 2-year RSA study of 39 patients. ActaOrthopaedica 2: 107-114.
8Luthringer BJ, Ali FF, Akaichi H, Feyerabend F, Ebel T, et al. (2013) Production, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds. Journal of Material Science Materials in Medicine 24: 2337-2358.
9Del Pozo JL and R Patel (2009) Infection associated with prosthetic joints. The New England Journal of Medicine. 361: 787–794.
10Bishop JA, Palanca AA, Bellino MJ, Lowenberg DW (2012) Assessment of compromised fracture healing. Journal of the American Academy of Orthopaedic Surgeons 20: 273-282.
11Chye KhoonPoh, YanliCai, Xiao Wei Tan, HarkChuan Tan, Wilson Wang (2013) An in vitro assessment of surface modification strategies for orthopedic applications. Thin Solid Films 544: 254-259.
12 VivianaMourino, Juan P Cattalini, JudithARoether, PrachiDubey, Ipsita Roy, et al. (2013) Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert opinion on drug delivery 10: 1353-1365.
13Neil Cobelli, Brian Scharf, Giovanna M Crisi, John Hardin, Laura Santambrogio(2011) Mediators of the inflammatory response to joint replacement devices. Nature Reviews Rheumatology 7: 600-608.
14Arens S, Kraft C, Schlegel U, Printzen G, Perren SM, and Hansis M (1999) Susceptibility to local infection in biological internal fixation. Experimental study of open vs. minimally invasive plate osteosynthesis in rabbits. Archives of Orthopaedic and Trauma Surgery 119: 82–85.
15Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M (2006) Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury 37: 105-112.
16 Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, et al. (2008) Infection burden for hip and knee arthroplasty in the United States. Journal of Arthroplasty 23: 984–991.
17Moriarty TF, Schlegel U, Perren S, Richards RG (2010) Infection in fracture fixation: can we influence infection rates through implant design? Journal of Materials Science: Materials in Medicine 21: 1031-1035.
18Namba RS, Inacio MC, Paxton EW (2012) Risk factors associated with surgical site infection in 30,491 primary total hip replacements. Journal of Bone and Joint Surgery - Series B 94: 1330-1338.
19 Raju Vaishya, Mayank Chauhan, Abhishek Vaish (2013) Bone cement. Journal of Clinical Orthopaedics and Trauma 4: 157-163.
20Bruno Dutra Roos, Milton ValdomiroRoos, Antero CamisaJúnior (2012) Circumferential proximal femoral allografts in revision surgery on total hip arthroplasty: case reports with a minimum follow-up of 20 years. RevistaBrasileira de Ortopedia 47: 384-388.
21Bernd Fink (2009) Revision of late periprosthetic infections of total hip endoprostheses: pros and cons of different concepts. International Journal of Medical Science6: 287-295.
22Wang X, Li Q, Xie J, Jin Z, Wang J, et al. (2009) Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates Nano Letters 9: 3137–3141.
23Shuilin Wu, Xiangmei Liu, Kelvin W.K. Yeung, Huan Guo, et al. (2013) Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surface and Coatings Technology 233: 13-26.
24Raymond M. Reily (2007) Carbon Nanotubes: Potential Benefits and Risks of Nanotechnology in Nuclear Medicine. The Journal of Nuclear Medicine 48: 1039-1042.
25 Dong Hwan Shin, Tolou Shokuhfar, Chang Kyoung Choi, Seong-Hyuk Lee, Craig Friedrich (2011) Wettability changes of TiO2 nanotube surfaces. Nanotechnology 22: 315704.
26Yan Hu, Kaiyong Cai, Zhong Luo, Dawei Xu, Daichao Xie, et al. (2012) TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Acta Biomaterialia 8: 439-448.
27Xiliag Luo, Christopher Matranga, Susheng Tan, Nicolas Alba, Xinyan T. Cui (2011) Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 32: 6316-6323.
28DebrupaLahiri,SanatGhosh, ArvindAgarwal (2012) Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: A review. Materials Science and Engineering 32: 1727–1758.
29Peter Newman, Andrew Minett, Rutledge Ellis-Behnke, Hala Zreiqat (2013) Carbon nanotubes: Their potential and pitfalls for bone tissue regeneration and engineering. Nanomedicine: Nanotechnology, Biology and Medicine 9: 1139-1158.
30Barry M. Gumbiner (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 9: 345-57.
31Feng Wanga, Liang Shic, Wen-Xi Hea, Dong Hand, Yan Yan, et al. (2013) Bioinspired micro/nano fabrication on dental implant–bone interface. Applied Surface Science 265: 480– 488.
32Noreen J Hickok, Irving M. Shapiro (2012) Immobilized antibiotics to prevent orthopaedic implant infections. Advanced Drug Delivery Reviews 64: 1165-1176.
33Aslan S, Loebick CZ, Kang S, Elimelech M, Pfefferle LD (2010) Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid). Nanoscale 2: 1789-1794.
34 Zhou J, Qi X (2011) Multi-walled carbon nanotubes/epilson-polylysine nanocomposite with enhanced antibacterial activity. Letters in Applied Microbiology 52: 76-83.
35Yu-Fu Young, Hui-Ju Lee, Yi-Shan Shen, Shih-Hao Tseng, Chi-Young Lee, et al (2012) Toxicity mechanism of carbon nanotubes on Escherichia coli. Materials Chemistry and Physics 134: 279-286.
36Xiaobao Qi, Poernomo Gunawan, Rong Xu, Matthew Wook Chang (2012) Cefalexin-immobilized multi-walled carbon nanotubes show strong antimicrobial and anti-adhesion properties. Chemical Engineering Science 84: 552-556.
37Sabrina D Puckett, Erik Taylor, Theresa Raimondo, Thomas J Webster (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31: 706–713.
38 Tomas Fiedler, Achim Salamon, Stefanie Adam, Nicole Herzmann, Jan Taubenheim, Kirsten Peters (2013) Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Experimental Cell Research 319: 2883-2892.
39Samar Basu, Karl Michaëlsson, Helena Olofsson, Sara Johansson, Håkan Melhus (2001) Association between oxidative stress and bone mineral density. Biochemical and Biophysical Research Communications 288: 275-279.
40Lee YH, Lee NH, Bhattarai G, Oh YT, Yu MK, et al. (2010) Enhancement of osteoblast biocompatibility on titanium surface with terrein treatment. Cell Biochemistry and Function 288: 678-685.
41Eckhardt A, Gerstmayr N, Hiller KA, Bolay C, Waha C, et al. (2009) TEGDMA-induced oxidative DNA damage and activation of ATM and MAP kinases. Biomaterials 30: 2006–2014.
42Florence Croisier, Christine Jérôme (2013) Chitosan-based biomaterials for tissue engineering. European Polymer Journal 49: 780-792.
43Kenneth KY Wong, Xuelai Liu (2010) Silver nanoparticles—the real "silver bullet" in clinical medicine?. Medical Chemistry Communications 1: 125–131.
44Sara Tavassoli Hojati, Homayoon Alaghemand, Faeze Hamze, Fateme Ahmadian Babaki, Ramazan Rajab-Nia, et al. (2013) Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dental Materials 29: 495-505.
45Sutha S, Karunakaran G, Rajendran V (2013) Enhancement of antimicrobial and long-term biostability of the zinc-incorporated hydroxyapatite coated 316L stainless steel implant for biomedical application. Ceramics International 39: 5205-5212.
46Ahmad Amiri, Hadi Zare Zardini, Mehdi Shanbedi, Morteza Maghrebi, Majid Baniadam, et al. (2012) Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Materials Letters 72: 153-156.
47Maho A, Linden S, Arnould C, Detriche S, Delhalle J, Mekhalif Z (2012) Tantalum oxide/carbon nanotubes composite coatings on titanium, and their functionalization with organophosphonic molecular films: A high quality scaffold for hydroxyapatite growth. Journal of Colloid and Interface Science 371: 150-158.
48Sławomir Boncel, Piotr Zając, Krzysztof Koziol KK (2013) Liberation of drugs from multi-wall carbon nanotube carriers. Journal of Controlled Release 169: 126-140.
49 Kodama A, Bauer S, Komatsu A, Asoh H, Ono S, et al. (2009) Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomaterialia 5: 2322-2330.
50Song Y, Li X, Du X (2009) Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. European Respiratory Journal 34: 559-567.
51/span>Liu Y, Zhoa Y, Sun B, Chen C (2012) Understanding the Toxicity of Carbon Nanotubes. Accounts of Chemical Research 46: 702-713.
52Niels Hadrup, Henrik R Lam (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver – A review. Regulatory Toxicology and Pharmacology 68: 1-7.
53Porntipa Chairuangkitti, Somsong Lawanprasert, Sittiruk Roytrakul, Sasitorn Aueviriyavit, Duangkamol Phummiratch, et al. (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicology in Vitro 27: 330-338.
54Wadhwa S, Rea C, O'Hare P, Mathur A, Roy SS, et al. (2011) Comparative in vitro cytotoxicity study of carbon nanotubes and titania nanostructures on human lung epithelial cells. Journal of Hazardous Materials 191: 56-61.
55Huang WM, Song CL, Fu YQ, Wang CC, Zhao Y, et al. (2013) Shaping tissue with shape memory materials. Advanced Drug Delivery Reviews 65: 515-535.
56Ruiqiang Hang, Xiaobo Huang, Linhai Tian, Zhiyong He, Bin Tang (2012) Preparation, characterization, corrosion behavior and bioactivity of Ni2O3-doped TiO2 nanotubes on NiTi alloy. Electrochimica Act 70: 382-393.
57 Yeong-Joon Park, Yo-Han Song, Ji-Hae An, Ho-Jun Song, Kenneth J Anusavice (2013) Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials. Journal of Dentistry 41: 1251-1258.
58Shuying Gu, Beibei Yan, Lingling Liu, JieRen (2013) Carbon nanotube–polyurethane shape memory nanocomposites with low trigger temperature. European Polymer Journal 49: 3867-3877.
59William Cheung, Francesco Pontoriero, Oleh Taratula, Alex Chen M, Huixin He ( 2010) DNA and carbon nanotubes as medicine. Advanced Drug Delivery Reviews 62: 633-649.
60Hou S, Wang J, Martin CR (2005) Template-Synthesized Protein Nanotubes. Nano Letters 5: 231-234.
61Moom Sinn Aw, Dusan Losic (2013) Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays. International Journal of Pharmaceutics 443: 154-162.
62Zoran Markovic M, Ljubica Harhaji-Trajkovic M, Biljana Todorovic-Markovic M, Dejan Kepić P, Katarina Arsikin M, (2011) In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32: 1121-1129.
63 Šeila Selimović, Mehmet R Dokmeci, Ali Khademhosseini (2013) Organs-on-a-chip for drug discovery. Current Opinion in Pharmacology 13: 829-833.