1Ahmad MZ, Kang JH, Sadek AZ, Moafi A, Sberveglieri G, et al. (2012) Synthesis of WO3 Nanorod based Thin Films for Ethanol and H2 Sensing. Procedia Engineering 47: 358-361.
2Sun ZY, Yuan HQ, Liu ZM, Han BX, Zhang XR (2005) A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv Mater 17: 2993-2997.
3Kuo LM, Shih Y, Wu C, Lin Y, Chao S, et al. (2013) A new hybrid method for H2S-sensitive devices using WO3-based film and ACF interconnect. Meas Sci Technol 24: 075105.
4Ghimbeu CM, Lumbreras M, Siadat M, Schoonman J (2010) Detection of H2S, SO2, and NO2 using electrostatic sprayed tungsten oxide films. Mat Sci Semicon Proc 13: 1-8.
5Ionescu R, Hoel A, Granqvist CG, Llobet E, Heszler P (2005) Ethanol and H2S gas detection in air and in reducing and oxidising ambience: application of pattern recognition to analyse the output from temperature-modulated nanoparticulate WO3 gas sensors. Sensor Actuat B-Chem 104: 124-131.
6Szilagyi IM, Saukko S, Mizsei J, Toth AL, Madarasz J, et al (2010) Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S. Solid State Sci 12: 1857-1860.
7Geng L (2010) Gas sensitivity study of polypyrrole/WO3 hybrid materials to H2S. Synth Met 160: 1708-1711.
8Han SD, Singh I, Kim HS, Kim ST, Jung YH, et al. (2002) H2S gas sensing characteristics of WO3 thick-films. Indian J Chem A 41: 1832-1836.
9Ono M, Shimanoe K, Miura N, Yamazoe N (2000) Amperometric sensor based on NASICON and NO oxidation catalysts for detection of total NOx in atmospheric environment. Solid State Ionics 136: 583-588.
10Shimizu K, Kashiwagi K, Nishiyama H, Kakimoto S, Sugaya S, et al. (2008) Impedancemetric gas sensor based on Pt and WO3 co-loaded TiO2 and ZrO2 as total NOx sensing materials. Sensor Actuat B-Chem 130: 707-712.
11SP Mondal, Dutta PK, Hunter GW, Ward BJ, Laskowski D, et al. (2011) Development of high sensitivity potentiometric NOx sensor and its application to breath analysis. Sensor Actuat B-Chem 158: 292-298.
12Ho JJ (2003) Novel nitrogen monoxides (NO) gas sensors integrated with tungsten trioxide (WO3)/pin structure for room temperature operation. Solid State Electron 47: 827-830.
13Hieu NV, Le D, Khoang ND, Quy NV, Hoa ND, et al. (2011) A comparative study on the NH3 gas-sensing properties of ZnO, SnO2, and WO3 nanowires. Int J Nanotechnol 8: 174-187.
14Marquis BT, Vetelino JF (2001) A semiconducting metal oxide sensor array for the detection of NOx and NH3. Sensor Actuat B-Chem 77: 100-110.
15Maciak E, Opilski Z, Pustelny T, Bednorz M (2005) An optical detection NH3 gas by means of a-WO3 thin films based on SPR technique. J Phys IV 129: 131-136.
16Jimenez I, Vila AM, Calveras AC, Morante JR (2005) Gas-sensing properties of catalytically modified WO3 with copper and vanadium for NH3 detection. IEEE Sens J 5: 385-391.
17 Srivastava, Jain K (2008) Highly sensitive NH3 sensor using Pt catalyzed silica coating over WO3 thick films. Sensor Actuat B-Chem 133: 46-52.
18Arienzo M D, Armelao L, Mari CM, Polizzi S, Ruffo R, et al. (2011) Macroporous WO3 Thin Films Active in NH3 Sensing: Role of the Hosted Cr Isolated Centers and Pt Nanoclusters. J Am Chem Soc 133: 5296-5304.
19Guerin J, Bendahan A, Aguir K (2008) . A dynamic response model for the WO3-based ozone sensors. Sensor Actuat B-Chem 128: 462-467.
20Qu WM, Wlodarski W (2000) A thin-film sensing element for ozone, humidity and temperature. Sensor Actuat B-Chem 64: 42-48.
21Labidi A, Gaidi M, Guérin J, Bejaoui A, Maaref M, et al. (2009) Alternating current investigation and modeling of the temperature and ozone effects on the grains and the grain boundary contributions to the WO3 sensor responses. Thin Solid Films 518: 355-361.
22Bendahan M, Boulmani R, Seguin JL, Agui K (2004) Characterization of ozone sensors based on WO3 reactively sputtered films: influence of O2 concentration in the sputtering gas and working temperature. Sensor Actuat B-Chem 100: 320-324.
23Al-Kuhaili MF, Durrani SMA, Bakhtiari IA (2010) Carbon monoxide gas-sensing properties of CeO2-WO3 thin films. Mater Sci Tech. 26: 726-731.
24Fukuda H, Zohnishi R, Nomura S (2001) Highly sensitive metal-insulator-semiconductor field-effect transistor sensors for detecting carbon monoxide gas using porous platinum and tungsten oxide thin films. Japanese Journal of Applied Physics 40: 2782-2786.
25Baraton MI, Merhari L, Ferkel H, Castagnet JF (2002) Comparison of the gas sensing properties of tin, indium and tungsten oxides nanopowders: carbon monoxide and oxygen detection. Mat Sci Eng C-Bio S 19: 315-321.
26Buono-Core GE, Klahn AH, Cabello G, Muñoz E, Bustamante MJ, et al. (2012) Pt/WO3 thin films prepared by photochemical metal-organic deposition (PMOD) and its evaluation as carbon monoxide sensor. Polyhedron 41: 134-139.
27Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, et al. (2012) Breath acetone monitoring by portable Si:WO3 gas sensors. Anal Chim Acta 738: 69-75.
28Wang L, Kalyanasundaram K, Stanacevic M, Gouma P (2010) Nanosensor Device for Breath Acetone Detection. Sens Lett 8.
29Wang L, Teleki A, Pratsinis SE, Gouma PI (2008) Ferroelectric WO3 Nanoparticles for Acetone Selective Detection. Chem Mater 20: 4794-4796.
30Righettoni M., Tricoli A, Pratsinis SE (2010) Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Anal Chem 82: 3581-3587.
31Deb SK (1969) A Novel Electrophotographic System. Appl Opt 8: 192-195.
32Khoobiar S (1964) Particle to Particle Migration of Hydrogen Atoms on Platinum-Alumina Catalysts from Particle to Neighboring Particles. J Phys Chem 68: 411-412.
33Varella H, Huguenin F, Malta M, Torresi RM (2002) Materiais para cátodos de baterias secundárias de lítio. Quim Nova 25: 287.
34Cláudio Trasferetti B, Paulo Rouxinol F, Rogério Gelamo V, Mário Bica de Moraes A (2004) Berreman Effect in Amorphous and Crystalline WO3 Thin Films. J Phys Chem B 108: 12333-12338.
35Ma S, Frederick BG (2003) Reactions of Aliphatic Alcohols on WO3(001) Surfaces. J Phys Chem B. 107: 11960-11969.
36Li M, Gao W, Posadas A, Ahn CH, Altman EI (2004) Reactivity of 1-Propanol on p(n×2) Reconstructed WO3(100) Thin Films. J Phys Chem B 108: 15259-15265.
37Kehl WL, Hay RG, Wahl D (1952) The Structure of Tetragonal Tungsten Trioxide. J Appl Phys 23: 212-215.
38Salje EKH (1977) The orthorhombic phase of WO3. Acta Crystallogr B 33: 574.
39Ekhard Salje KH, Stephan Rehmann, Frank Pobell, Darryl Morris, Kevin S Knight, et al. (1997) Crystal structure and paramagnetic behaviour of ε-WO3-x. J Phys-Condens Mat 9: 6563.
40Woodward PM, Sleight AW, Vogt T (1995) Structure refinement of triclinic tungsten trioxide. J Phys Chem Solids 56: 1305-1315.
41Diehl R, Brandt G, Salje EKH (1978) The crystal structure of triclinic WO3. Acta Crystallogr B 34.
42 Jiménez I, Arbiol J, Dezanneau G, Cornet A, Morante JR (2003) Crystalline structure, defects and gas sensor response to NO2 and H2S of tungsten trioxide nanopowders. Sensors Actuators B: Chem. 93: 475-485.
43Liu Z, Yamazaki T, Shen Y, Kikuta T, Nakatani N (2007) Influence of annealing on microstructure and NO2-sensing properties of sputtered WO3 thin films. Sensor Actuat B-Chem 128: 173-178.
44Woodward PM, Sleight AW, Vogt T (1997) Ferroelectric Tungsten Trioxide. J Solid State Chem. 131: 9-17.
45Righettoni M, Tricoli A, Pratsinis SE (2010) Thermally Stable, Silica-Doped ε-WO3 for Sensing of Acetone in the Human Breath. Chem Mater 22: 3152-3157.
46 Jing-Xiao Liua b, Xiao-Li Dongb, Xiang-Wen Liua, Fei Shib, Shu Yin, et al. (2011) Solvothermal synthesis and characterization of tungsten oxides with controllable morphology and crystal phase. J Alloys Compounds 509: 1482-1488.
47Hiroshi Kominamia,Jun-ichi Katoa, Shin-ya Murakamia, Yoshinori Ishiia, Masaaki Kohno, et al. (2003) Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities. Catalysis Today 84: 181-189.
48Gavrilyuk AI (1999) Photochromism in WO3 thin films. Electrochim Acta 44: 3027-3037.
49Se-Hee Lee, Hyeonsik Cheong M, Ji-Guang Zhang, Angelo Mascarenhas, David Benson K, et al. (1999) Electrochromic mechanism in a-WO3−y thin films. Appl Phys Lett 74: 242-244.
50Roller JM, Jiménez MJ, Yu H, Jain J, Carter CB, et ak. (2013) Catalyst nanoscale assembly from the vapor phase on corrosion resistant supports. Electrochim Acta 107: 632-655.
51Roller JM, Jiménez MJ, Jain R, Yu H, Carter CB, et al. (2013) Processing, Activity and Microstructure of Oxygen Evolution Anodes Prepared by a Dry and Direct Deposition Technique. ECS Trans 45: 97-106.
52Roller J, Neagu R, Orfino F, Maric R (2012) Supported and unsupported platinum catalysts prepared by a one-step dry deposition method and their oxygen reduction reactivity in acidic media. J Mater Sci 47: 4604-4611.
53Maric R, Roller J, Neagu R (2011) Flame-Based Technologies and Reactive Spray Deposition Technology for Low-Temperature Solid Oxide Fuel Cells: Technical and Economic Aspects. J Therm Spray Techn 20: 696-719.
54Maric R, Furusaki K, Nishijima D, Neagu R (2011) Thin Film Low Temperature Solid Oxide Fuel Cell (LTSOFC) by Reactive Spray Deposition Technology (RSDT). ECS Trans 35: 473-481.
55Nédéleca R, Neagub R, Uhlenbrucka S, Maricc R, Sebolda D, et al. (2011) Gas phase deposition of diffusion barriers for metal substrates in solid oxide fuel cells. Surf Coat Tech 205: 3999-4004.
56Maric R, Neagu R, Zhang-Steenwinkel Y, Van Berkel FPF, Rietveld B (2010) Reactive Spray Deposition Technology – An one-step deposition technique for Solid Oxide Fuel Cell barrier layers. J Power Sources 195: 8198-8201.
57Yongsong Xie, Roberto Neagu, Ching-Shiung Hsu, Xinge Zhang, Cyrille Decès-Petit, et al. (2010) Thin Film Solid Oxide Fuel Cells Deposited by Spray Pyrolysis. J Fuel Cell Sci Tech 7: 021007.
58Khalid Fatih, Roberto Neagu, Vanesa Alazate, Vladimir Neburchilov, Radenka Maric, et al. (2009) Activity of Pt-Sn Catalyst Prepared by Reactive Spray Deposition Technology for Ethanol Electro-oxidation. ECS Trans 25: 1177-1183.
59Neagu R, Zhang X, Maric R, Roller JM (2009) Characterisation and Performance of SOFC Components made by Reactive Spray Deposition Technology. ECS Trans 25: 2481-2486.
60Maric R, Roller JM, Neagu R, Fatih K, Tuck A (2008) Low Pt Thin Cathode Layer Catalyst Layer by Reactive Spray Deposition Technology. ECS Trans 12: 59-63.
61Maric R, Vanderhoek TPK, Roller JM (2008) Reactive Spray Formation of Coatings and Powders. US Patent App 370.
62Zhenwei Wanga, Rob Huia, Nikica Bogdanovicb, Zhaolin Tangb, Sing Yick, et al. (2007) Plasma spray synthesis of ultra-fine YSZ powder. J Power Sources 170: 145-149.
63MARIC Radenka, DECES-PETIT Cyrille, HUI Rob, XINGE ZHANG, GHOSH Dave, et al. (2006) Preparation and Characterization of Nanocrystalline Ba2In2− xMxO5−δ (M = Ce, Zr ) . J Electrochem Soc 153: A1505-A1510.
64Rob Huia, Radenka Marica, Cyrille Decès-Petita, Edward Stylesa, Wei Qu, et al. (2006) Proton conduction in ceria-doped Ba2In2O5 nanocrystalline ceramic at low temperature. J Power Sources 161: 40-46.
65Maric R, Oljaca M, Vukasinovic B, Hunt AT (2004) Synthesis of Oxide Nanopowders in NanoSpraySM Diffusion Flames. Mater Manuf Process 19: 1143-1156.
66Jain R, Maric R (2014) Synthesis of nano-Pt onto ceria support as catalyst for water–gas shift reaction by Reactive Spray Deposition Technology. Appl Catal A-Gen 475L 461-468.
67 Bittencourt C, Llobet E, Ivanov P, Vilanova X, Correig X, et al. (2004) Ag induced modifications on WO3 films studied by AFM, Raman and x-ray photoelectron spectroscopy. J Phys D Appl Phys 37: 3383-3391.
68ZouC YS, Zhang YC, Lou D, Wang HP, Gu L, et al. (2014) Structural and optical properties of WO3 films deposited by pulsed laser deposition. J Alloys Compounds 583: 465-470.
69Hong-Tao Sun, Carlo Cantalini, Luca Lozzi, Maurizio Passacantando, Sandro Santucci, et al. (1996) Microstructural effect on NO2 sensitivity of WO3 thin film gas sensors Part 1. Thin film devices, sensors and actuators. Thin Solid Films 287: 258-265.
70Tahmasebi Garavand N, Mahdavi SM, Iraji zada A, Ranjbar M (2012) The effect of operating temperature on gasochromic properties of amorphous and polycrystalline pulsed laser deposited WO3 films. Sensor Actuat B-Chem 169: 284-290.
71Guo Y, Quan X, Lu N, Zhao H, Chen S (2007) High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes. Environ Sci Technol 41: 4422-4427.
72Arai M, Hayashi S, Yamamoto K, Kim SS (1990) Raman Studies of Phase-Transitions in Gas-Evaporated WO3 Microcrystals. Solid State Commun 75: 613-616.
73Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) Crystallographically oriented Mesoporous WO3 films: Synthesis, characterization, and applications. J Am Chem Soc 123: 10639-10649.
74Salje EKH (1975) Lattice dynamics of WO3. Acta Cryst A31: 360-363.