1Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202: 1-8.
2Gao XF, Jiang L (2004) Water-repellent legs of water striders. Nature 432: 36-36.
3Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414: 33-34.
4Koch K, Blecher IC, Koenig G, Kehraus S, Barthlott W (2009) The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): a biological model for spreading of water and oil on surfaces. Funct Plant Biol 36: 339-350.
5Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philos T R Soc A 367: 1487-1509.
6Anmin C, Liangliang C, Di G (2007) Fabrication of nonaging superhydrophobic surfaces by packing flowerlike hematite particles. Appl Phys Lett 91: 034102.
7Cao L, Hu HH, Gao D (2007) Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 23: 4310-4314.
8Hoefnagels HF, Wu D, deWith G, Ming W (2007) Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir 23: 13158-13163.
9Sun TL, Feng L, Gao XF, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38: 644-652.
10Liu XM, He JH (2007) Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres. J Colloid Interface Sci 314: 341-345.
11Cebeci FC, Wu ZZ, Zhai L, Cohen RE, Rubner MF (2006) Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings. Langmuir 22: 2856-2862.
12Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, et al. (2012) Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir 28: 7212-7222.
13Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40: 546–551.
14Pan SJ, Kota AK, Mabry JM, Tuteja A (2013) Superomniphobic surfaces for effective chemical shielding. J Am Chem Soc 135: 578-581.
15Cao LL, Jones AK, Sikka VK, Wu JZ, Gao D (2009) Anti-icing superhydrophobic coatings. Langmuir 25: 12444-12448.
16Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A (2012) Hygro-responsive membranes for effective oil-water separation. Nat Commun 3: 1025.
17Kobaku SPR, Kota AK, Lee DH, Mabry JM, Tuteja A (2012) Patterned superomniphobic-superomniphilic surfaces: templates for site-selective self-assembly. Angew Chem Int Ed 51: 10109-10113.
18Bhushan B, Jung YC (2007) Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy 107: 1033-1041.
19Tuteja A, Choi W, Mabry JM, McKinley GH, Cohen RE (2008) Engineering robust omniphobic surfaces. PNAS 105: 18200-18205.
20Johnson RE, Dettre RH (1964) Contact angle hysteresis. In Contact Angle, Wettability and Adhesion. ACS Advances in Chemistry 112-135.
21Shuttleworth, Bailey GLJ (1948) The spreading of a liquid over a rough solid. Discuss Faraday Soc 3: 16-22.
22Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28: 988–994.
23Bartolo D, Bouamrirene F, Verneui É, Buguin A, Silberzan P, et al. (2006) Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Europhys Lett 74: 299-305.
24Balu B, Breedveld V, Hess DW (2008) Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing. Langmuir 24: 4785-4790.
25Hoefnagels HF, Wu D, de With G, Ming W (2007) Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir 23: 13158-13163.
26Stone HA, Lauga E (2007) Springer handbook of experimental fluid mechanics. Chapter 19.
27Voronov RS, Papavassiliou DV, Lee LL (2008) Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Ind Eng Chem Res 47: 2455-2477.
28Pit R, Hervet H, Leger L (2000) Direct experimental evidence of slip in hexadecane: Solid interfaces. Phys Rev Lett 85: 980-983.
29Huang DM, Sendner C, Horinek D, Netz RR, & Bocquet L (2008) Water slippage versus contact angle: A quasiuniversal relationship. Phys Rev Lett 101: 226101-226104.
30Quéré D (2008) Wetting and roughness. Annu Rev Mater Res 38:71-99.
31Rothstein JP (2010) Slip on superhydrophobic surfaces. Annu Rev Fluid Mech 42:89-109.
32McHale G, Newton MI, Shirtcliffe NJ (2010) Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties. Soft Matter 6: 714-719.
33Tretheway DC, Meinhart CD (2004) A generating mechanism for apparent fluid slip in hydrophobic microchannels. Phys Fluids 16: 1509-1515.
34Shirtcliffe NJ, McHale G, Newton MI, Perry CC, Pyatt FB (2006) Plastron properties of a superhydrophobic surface. Appl Phys Lett 89: 2347266-2347267.
35Flynn MR, Bush JWM (2008) Underwater breathing: the mechanics of plastron respiration. J Fluid Mech 608: 275-296.
36Watanabe K, Yanuar, Udagawa H (1999) Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J Fluid Mech 381: 225-238.
37Lee C, Choi CH, Kim CJ (2008) Structured surfaces for a giant liquid slip. Phys Rev Lett 101: 064501-064504.
38Ou J, Perot B, Rothstein JP (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16: 4635-4643.
39McHale G, Shirtcliffe NJ, Evans CR, Newton MI (2009) Terminal velocity and drag reduction measurements on superhydrophobic spheres. Appl Phys Lett 94: 064104-064104-3.
40Choi CH, Ulmanella U, Kim J, Ho CM, Kim CJ (2006) Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys Fluids 18: 087105.
41Salil Gogte, Peter Vorobieff, Richard Truesdell, Andrea Mammoli, Frank van Swol, et al. (2005) Effective slip on textured superhydrophobic surfaces. Phys Fluids 17: 051701.
42Lee C, Kim CJ (2009) Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 25: 12812-12818.
43Truesdell R, Mammoli A, Vorobieff P, van Swol F, Brinker CJ (2006) Drag reduction on a patterned superhydrophobic surface. Phys Rev Lett 97: 044504.
44Siddarth Srinivasan, Wonjae Choi, Kyoo-Chul Park, Shreerang S. Chhatre, Robert E. Cohen, et al. (2013) Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces. Soft Matter 9: 5691-5702.
45Bocquet L, Barrat JL (2007) Flow boundary conditions from nano- to micro-scales. Soft Matter 3: 685-693.
46Ybert C, Barentin C, Cottin-Bizonne C, Joseph P, Bocquet L (2007) Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries. Phys Fluids 19: 123601.
47Joseph P, Cottin-Bizonne C, Benoît JM, Ybert C, Journet C, et al. (2006) Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys Rev Lett 97: 106104.
48Ybert C, Barentin C, Cottin-Bizonne C, Joseph P, Bocquet L (2007) Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries. Phys Fluids 19: 123601.
49 Carlborg CF, van der Wijngaart W (2011) Sustained superhydrophobic friction reduction at high liquid pressures and large flows. Langmuir 27: 487-493.
50 Shirtcliffe NJ, McHale G, Newton MI, Zhang Y (2009) Superhydrophobic copper tubes with possible flow enhancement and drag reduction. Acs Appl Mater Interfaces 1: 1316-1323.
51Patankar NA (2010) Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter 6: 1613-1620.
52Dhir VK (1998) Boiling heat transfer. Annu Rev Fluid Mech 30: 365-401.
53Chen R, Lu MC, Srinivasan V, Wang Z, Cho HH, et al. (2009) Nanowires for enhanced boiling heat transfer. Nano Lett 9: 548-553.
54Jo H, Ahn HS, Kang S, Kim MH (2011) A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces. Int J Heat Mass Transfer 54: 5643-5652.
55Dhir VK (2006) Mechanistic prediction of nucleate boiling heat transfer - Achievable or a hopeless task? J Heat Transfer 128: 1-12.
56Vakarelski IU, Patankar NA, Marston JO, Chan DYC, Thoroddsen ST (2012) Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489: 274-277.
57 Zuber N (1959) Hydrodynamic aspects of boiling heat transfer. Ph.D. Thesis (University of California at Los Angeles).
58Kim SJ, Bang IC, Buongiono J, Hu LW (2006) Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl Phys Lett 89: 153107.
59Takata Y, Hidaka S, Masuda M, Ito T (2003) Pool boiling on a superhydrophilic surface. Int J Energ Res 27: 111-119.
60Betz AR, Jenkins JR, Kim CJ, Attinger D (2011) Significant boiling enhancement with surfaces combining superhydrophilic and superhydrophobic patterns. MEMS 1193-1196.
61Betz AR, Xu J, Qiu HH, Attinger D (2010) Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl Phys Lett 97: 141909-141909.
62Zhang L, Shoji M (2003) Nucleation site interaction in pool boiling on the artificial surface. Int J Heat Mass Transfer 46: 513-522.
63Nora Berrahmouni, Rosalaura Romeo, Douglas McGuire, Sergio Zelaya, Daniel Maselli, et al. (2011) Highlands and drylands – mountains, a source of resilience in arid regions. Food and Agricultural Organizations for the United Nations and Centre for Development and Environment of the University of Bern.
64U.S. Geological Survey. What is a desert?
65Klemm O, Schemenauer RS, Lummerich A, Cereceda P, Marzol V, et al. (2012) Fog as a fresh-water resource: Overview and perspectives. Ambio 41: 221-234.
66Dawson TE (1998) Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117: 476-485.
67Limm EB, Simonin KA, Bothman AG, Dawson TE (2009) Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161: 449-459.
68Vasey MC, Loik ME, Parker VT (2012) Influence of summer marine fog and low cloud stratus on water relations of evergreen woody shrubs (Arctostaphylos: Ericaceae) in the chaparral of central California. Oecologia 170: 325-337.
69Chhatre SS (2013) Designing liquid repellent surfaces for fabrics, feathers, and fog.
70Darwish MA, Al-Najem NM (2000) Energy consumption by multi-stage flash and reverse osmosis desalters. Appl Therm Eng 20: 399-416.
71Hamilton WJ, Seely MK (1976) Fog basking by Namib desert beetle, Onymacris Unguicularis. Nature 262: 284-285.
72Martorell C, Ezcurra E (2007) The narrow-leaf syndrome: A functional and evolutionary approach to the form of fog-harvesting rosette plants. Oecologia 151: 561-573.
73Ju J, Bai H, Zheng Y, Zhao T, Fang R, et al. (2012) A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun 3: 1247 .
74Yongmei Zheng, Hao Bai, Zhongbing Huang, Xuelin Tian, Fu-Qiang Nie, et al. (2010) Directional water collection on wetted spider silk. Nature 463: 640-643.
75Lei Zhai , Michael Berg C, Fevzi Cebeci C, Yushan Kim, John Milwid M, et al. (2006) Patterned superhydrophobic surfaces: Toward a synthetic mimic of the Namib desert beetle. Nano Lett 6: 1213-1217.
76Dorrer C, Ruhe J (2008) Mimicking the stenocara beetle-dewetting of drops from a patterned superhydrophobic surface. Langmuir 24: 6154-6158.
77Yang H, Zhu H, Hendrix MM, Lousberg NJ, de With G, et al. (2013) Temperature-triggered collection and release of water from fogs by a sponge-like cotton fabric. Adv Mater 25: 1150-1154.
78Dong H, Wang N, Wang L, Bai H, Wu J, et al. (2012) Bioinspired electrospun knotted microfibers for fog harvesting. Chemphyschem 13: 1153-1156.
79Cereceda P, Larrain H, Osses P, Farías A, Egaña I (2008) The spatial and temporal variability of fog and its relation to fog oases in the Atacama Desert, Chile. Atmos Res 87: 312-323.
80Schemenauer RS, Cereceda P (1994) A proposed standard fog collector for use in high-elevation regions. J Appl Meteorol 33: 1313-1322.
81Schemenauer RS, Joe PI (1989) The collection efficiency of a massive fog collector. Atmos Res 24: 53-69.
82Rivera JD (2011) Aerodynamic collection efficiency of fog water collectors. Atmos Res 102: 335-342.
83 Park KC, Chhatre SS, Srinivasan S, Cohen RE, McKinley GH (2013) Optimal design of permeable fiber network structures for fog harvesting. Langmuir 29: 13269-13277.
84Haase AS, Karatay E, Tsai PA, Lammertink RGH (2013) Momentum and mass transport over a bubble mattress: the influence of interface geometry. Soft Matter 9: 8949-8957.
85Lekoucha I, Musellib M, Kabbachia B, Ouazzanib J, Melnytchouk-Milimouk I, et al. (2011) Dew, fog, and rain as supplementary sources of water in south-western Morocco. Energy 36: 2257-2265.
86Beysens D, Milimouk I, Nikolayev V, Muselli M, Marcillat J (2003) Using radiative cooling to condense atmospheric vapor: a study to improve water yield. J Hydrol 27: 1-11.