1Navarro M, Michiardi A, Castaño O, Planell JA (2008) Biomaterials in orthopaedics. J R Soc Interface 5: 1137-1158.
5 Niinomi M (2008) Metallic biomaterials. J Artif Organs 11: 105–110.
6Minagar S, Berndt CC, Wang J, Ivanova E, Wen C (2012) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8: 2875-2888.
77) Niespodziana K, Jurczyk K, Jurczyk M (2008) The synthesis of titanium alloys for biomedical applications. Rev Adv Mater Sci 18: 236-240.
8Barão VA, Mathew MT, Assunção WG, Yuan JC, Wimmer MA, et al. (2012) Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH - an electrochemical study. Clin Oral Implants Res 23: 1055-1062.
15Lausmaa J (1996) Surface spectroscopic characterization of titanium implant materials. Journal of Electron Spectroscopy and Related Phenomena. 81: 343-361.
16Xuanyong Liua, Paul K Chub, Chuanxian Ding (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science & Engineering R-Reports. 47: 49-121.
17Xixue Hua, Hong Shen, Kegang Shuai, Enwei Zhanga, Yanjie Bai, Yan Cheng , et al. (2011) Surface bioactivity modification of titanium by CO2 plasma treatment and induction of hydroxyapatite: In vitro and in vivo studies. Applied Surface Science 257: 1813-1823.
18Barão VA, Mathew MT, Assunção WG, Yuan JC, Wimmer MA, et al. (2011) The Role of Lipopolysaccharide on the Electrochemical Behavior of Titanium. Journal of Dental Research 90: 613-618.
22Shokuhfar T1, Arumugam GK, Heiden PA, Yassar RS, Friedrich C (2009) Direct Compressive Measurements of Individual Titanium Dioxide Nanotubes. Acs Nano 3: 3098-3102.
23Asthana A, Shokuhfar T, Gao Q, Heiden P, Friedrich C, et al. (2010) A study on the modulation of the electrical transport by mechanical straining of individual titanium dioxide nanotube. Applied Physics Letters 97.
24Shokuhfar T, Gao Q, Ashtana A, Walzack K, Heiden P, et al. (2010) Structural instabilities in TiO2 nanotubes. Journal of Applied Physics 108.
25Asthana A, Shokuhfar T, Gao Q, Heiden PA, Yassar RS (2012) Deformation-driven electrical transport in amorphous TiO2 nanotubes. Applied Physics a-Materials Science & Processing 109: 127-132.
26Debmalya Ganguly, Tolou Shokuhfar, Reza Shahbazian-Yassar (2014) Recent Advances in Nanotubes for Orthopedic Implants. J Nanotech Smart Mater 1: 201.
27Tsuchiya H, Macak JM, Müller L, Kunze J, Müller F et al (2006) Hydroxyapatite growth on anodic TiO2 nanotubes. J Biomed Mater Res A 77: 534-541.
28Oh SH, Finõnes RR, Daraio C, Chen LH, Jin S (2005) Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26: 4938-4943.
29Von Wilmowsky C, Bauer S, Roedl S, Neukam FW, Schmuki P, et al. (2012) The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2 expression in vivo. Clin Oral Implants Res 23: 359-366.
30Kim HW, Koh YH, Li LH, Lee S, Kim HE (2004) Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials 25: 2533-2538.
31Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, et al. (2010) Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 92: 1218-1224.
32Yamano S, Al-Sowygh ZH, Gallucci GO, Wada K, Weber HP, et al. (2011) Early peri-implant tissue reactions on different titanium surface topographies. Clin Oral Implants Res 22: 815-819.
33Simchi A, Tamjid E, Pishbin F, Boccaccini AR (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine 7: 22-39.
34Brammer KS, Oh S, Cobb CJ, Bjursten LM, van der Heyde H, et al. (2009) Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater 5: 3215-3223.
35Changdeuck Bae, Hyunjun Yoo, Sihyeong Kim, Kyungeun Lee, Jiyoung Kim, et al. (2008) Template-directed synthesis of oxide nanotubes: Fabrication, characterization, and applications. Chemistry of Materials 20: 756-767.
40Macak JM, Tsuchiya H, Taveira L, Ghicov A, Schmuki P (2005) Self-organized nanotubular oxide layers on Ti-6A1-7Nb and Ti-6A1-4V formed by anodization in NH4F solutions. J Biomed Mater Res A 75: 928-933.
41Tolou Shokuhfar,Suman Sinha-Ray, Cortino Sukotjoc, Alexander Yarin L (2013) Intercalation of anti-inflammatory drug molecules within TiO2 nanotubes. Rsc Advances 3: 17380-17386.
42Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, et al. (2007) TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State & Materials Science 11: 3-18.
43Poulomi Roy, Steffen Berger, Patrik Schmuki (2011) TiO2 Nanotubes: Synthesis and Applications. Angewandte Chemie-International Edition 50: 2904-2939.
44Andrei Ghicova, Patrik Schmuki (2009) Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chemical Communications 20: 2791-2808.
45Sergiu Albu P, Andrei Ghicov, Saule Aldabergenova, Peter Drechsel, Darren LeClere , et al. (2008) Formation of Double-Walled TiO2 Nanotubes and Robust Anatase Membranes. Advanced Materials 20: 4135.
46Karla S. Brammer, Seunghan Oh, Christine J. Frandsen, Sungho Jin (2011) Biomaterials and Biotechnology Schemes Utilizing TiO2 Nanotube Arrays. 9
47Stephen Massia P (1999) Cell-extracellular matrix interactions relevant to vascular tissue engineering. Tissue Engineering Prosthetic Vascular Grafts.
48Seunghan Oh, Sungho Jin (2006) Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 26: 1301-1306.
49Park J, Bauer S, von der Mark K, Schmuki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Letters 7: 1686-1691.
50Nourmohammadzadeh M, Lo JF, Bochenek M, Mendoza-Elias JE, Wang Q (2013) Microfluidic Array with Integrated Oxygenation Control for Real-Time Live-Cell Imaging: Effect of Hypoxia on Physiology of Microencapsulated Pancreatic Islets. Analytical Chemistry 85: 11240-11249.
51Eshkeitia A, Narakathua BB, Reddya ASG, Moorthia A, Atashbar MZ (2012) Detection of heavy metal compounds using a novel inkjet printed surface enhanced Raman spectroscopy (SERS) substrate. Sensors and Actuators B-Chemical 171: 705-711.
52Tami AE, Schaffler MB, Knothe Tate ML (2003) Tate, Probing the tissue to subcellular level structure underlying bone's molecular sieving function. Biorheology 40: 577-590.
53 Tana AW, Pingguan-Murphya B, R. Ahmadb, S.A. Akbar (2012) Review of titania nanotubes: Fabrication and cellular response. Ceramics International 38: 4421-4435.
54Oh S, Daraio C, Chen LH, Pisanic TR, Fiñones RR, et al. (2006) Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A 78: 97-103.
55Brammer KS, Frandsen CJ, Jin S (2012) TiO2 nanotubes for bone regeneration. Trends Biotechnol 30: 315-322.
60Karla Brammera S, Seunghan Oha, Christine Frandsena J, Shyni Varghesec, Sungho Jin (2010) Nanotube surface triggers increased chondrocyte extracellular matrix production. Materials Science & Engineering C-Materials for Biological Applications 30: 518-525.
61 Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1: 30-42.
62Kathy Wang (1996) The use of titanium for medical applications in the USA. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 213: 134-137.
63Peng L, Eltgroth ML, LaTempa TJ, Grimes CA, Desai TA (2009) The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials 30: 1268-1272.
64 Park J, Bauer S, Schmuki P, von der Mark K (2009) Narrow Window in Nanoscale Dependent Activation of Endothelial Cell Growth and Differentiation on TiO2 Nanotube Surfaces. Nano Letters 9: 3157-3164.
65Giordano C, Saino E, Rimondini L, Pedeferri MP, Visai L, et al. (2011) Electrochemically induced anatase inhibits bacterial colonization on Titanium Grade 2 and Ti6Al4V alloy for dental and orthopedic devices. Colloids Surf B Biointerfaces 88: 648-655.
66Ercan B, Taylor E, Alpaslan E, Webster TJ (2011) Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology 29: 11.
67Giordano C, et al. (2004) Titanium for osteointegration: Comparison between a novel biomimetic treatment and commercially exploited surfaces. Journal of applied biomaterials & biomechanics 2: 35-44.
68Christensen GD , WA Simpson, Younger JJ, BaddourLM, Barrett FF, et al. (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22: 996-1006.
69Chen CS (2008) Mechanotransduction - a field pulling together? (2008) J Cell Sci 121: 3285-3292.
70Yu WQ, Jiang XQ, Zhang FQ, Xu L (2010) The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res A 94: 1012-1022.
74Hamlekhan A, Butt A, Patel S, Royhman D, Takoudis C, et al. (2014) Fabrication of Anti-Aging TiO2 Nanotubes on Biomedical Ti Alloys. PLOS ONE 2014.
75Sweetu B Patel, Azhang Hamlekhan, Dmitry Royhman, Arman Butt, Judy Yuan (2014) Enhancing Surface Characteristics of Ti-6Al-4V for Bio-implants Using Integrated Anodization and Thermal Oxidation. J Mater Chem.
76Yu Bai, Song Park, Hyeoung Ho Park, Min Ho Lee, Tae Sung Bae, et al. (2011) The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surface and Interface Analysis 43: 998-1005.
77Zhao L, Mei S, Chu PK, Zhang Y, Wu Z (2010) The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials 31: 5072-5082.
78Gao L, Feng B, Wang J, Lu X, Liu D, et al. (2009) Micro/Nanostructural Porous Surface on Titanium and Bioactivity. J Biomed Mater Res B Appl Biomater 89: 335-341.
79Shin DH, Shokuhfar T, Choi CK, Lee SH, Friedrich C (2011) Wettability changes of TiO2 nanotube surfaces. Nanotechnology 22.
80Bauer S, Park J, von der Mark K, Schmuki P (2008) Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomaterialia 4: 1576-1582.
84Young-Taeg Sul, Carina B Johansson, Yongsoo Jeong, Tomas Albrektsson (2001) The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Medical Engineering & Physics 23: 329-346.
85Cai QY, Yang LX, Yu Y (2006) Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization. Thin Solid Films 515: 1802-1806.
86Kouji Yasuda, Patrik Schmuki (2007) Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)(2)SO4/NH4F electrolytes. Electrochimica Acta. 52: 4053-4061.
87Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Titania nanotubes: A novel platform for drug-eluting coatings for medical implants? Small 3: 1878-1881.
88Shokuhfar T (2010) Structural and surface property characterization of titanium dioxide nanotubes for orthopedic implants. Michigan Technological University.
89Narayanana R, Tae-Yub Kwona,Kyo-Han Kim (2009) TiO2 nanotubes from stirred glycerol/NH4F electrolyte: Roughness, wetting behavior and adhesion for implant applications. Materials Chemistry and Physics 117: 460-464.
90Jun Wana, Xia Yan, Junjie Ding, Meng Wang, Kongcheng Hu (2009) Self-organized highly ordered TiO2 nanotubes in organic aqueous system. Materials Characterization 60: 1534-1540.
91Claus Moseke, Felix Hage, Elke Vorndran, Uwe Gbureck (2012) TiO2 nanotube arrays deposited on Ti substrate by anodic oxidation and their potential as a long-term drug delivery system for antimicrobial agents. Applied Surface Science 258: 5399-5404.
92Sergiu P. Albu, Andrei Ghicov, Jan M. Macak, Patrik Schmuki (2007) 250 mu m long anodic TiO2 nanotubes with hexagonal self-ordering. Physica Status Solidi-Rapid Research Letters 1: R65-R67.
93 Lan Zhang, Jianmin Shao, Yong Han (2011) Enhanced anodization growth of self-organized ZrO2 nanotubes on nanostructured zirconium. Surface & Coatings Technology 205: 2876-2881.
94Christine J Frandsen, Karla S Brammer, Kunbae Noh, Laura S Connelly, Seunghan Oh, et al.(2011) Zirconium oxide nanotube surface prompts increased osteoblast functionality and mineralization. Materials Science & Engineering C-Materials for Biological Applications 31: 1716-1722.
95Saulacic N, Bosshardt DD, Bornstein MM, Berner S, Buser D (2012) Bone apposition to a titanium-zirconium alloy implant, as compared to two other titanium-containing implants. Eur Cell Mater 23: 273-288.
96Mueller CK, Solcher P, Peisker A, Mtsariashvilli M, Schlegel KA, et al. (2013) Analysis of the influence of the macro- and microstructure of dental zirconium implants on osseointegration: a minipig study. Oral Surg Oral Med Oral Pathol Oral Radiol 116: E1-E8.
101Tsuchiya H, Macak JM, Ghicov A, Schmuki P (2006) Self-organization of anodic nanotubes on two size scales. Small 2: 888-891.
102Feng XJ, Macak JM, Albu SP, Schmuki P (2008) Electrochemical formation of self-organized anodic nanotube coating on Ti-28Zr-8Nb biomedical alloy surface. Acta Biomaterialia 4: 318-323.
103Hiroaki Tsuchiyaa, Toshifumi Akakia, Junji Nakataa, Daisuke Teradab, Nobuhiro Tsuji, et al. (2009) Metallurgical aspects on the formation of self-organized anodic oxide nanotube layers. Electrochimica Acta 54: 5155-5162.
104Hiroshi Nakada, Yasuko Numata, Toshiro Sakae, Yoshimitsu Okazaki, Yasuhiro Tanimoto, et al. (2008) Comparison of Bone Mineral Density and Area of Newly Formed Bone Around Ti-15%Zr-4%Nb-4%Ta Alloy and Ti-6%Al-4%V Alloy Implants. Journal of Hard Tissue Biology 17: 99-108.
105Gulati K, Aw MS, Losic D (2011) Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection. Nanoscale Res Lett 6.
113Zhao XC, Liu RT (2012) Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ Int 40: 244-255.
114Craig Poland A, Rodger Duffin, Ian Kinloch, Andrew Maynard, William Wallace AH, et al. (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology 3: 423-428.
115 Hu Y, Cai K, Luo Z, Xu D, Xie D, et al. (2012) TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Acta Biomaterialia 8: 439-448.
116Bae IH, Yun KD, Kim HS, Jeong BC, Lim HP, et al. (2010) Anodic Oxidized Nanotubular Titanium Implants Enhance Bone Morphogenetic Protein-2 Delivery. J Biomed Mater Res B Appl Biomater 93: 484-491.
117Aw MS, Addai-Mensah J, Losic D (2012) A multi-drug delivery system with sequential release using titania nanotube arrays. Chem Commun (Camb) 48: 3348-3350.
118Liang YQ, Cui ZD, Zhu SL, Yang XJ, et al. (2011) Characterization of self-organized TiO2 nanotubes on Ti-4Zr-22Nb-2Sn alloys and the application in drug delivery system. J Mater Sci Mater Med 22: 461-467.
119Popat KC, Eltgroth M, Latempa TJ, Grimes CA, Desai TA (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28: 4880-4888.