1Loeser RF (2006) Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum 54: 1357-1360.
2Zhang W, Nuki G, Moskowitz RW, Abramson S, Altman RD, et al. (2010) OARSI recommendations for the management of hip and knee osteoarthritis: part III: Changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cartilage 18: 476-499.
3Loeser RF, Carlson CS, Del Carlo M, Cole A (2002) Detection of nitrotyrosine in aging and osteoarthritic cartilage: Correlation of oxidative damage with the presence of interleukin-1beta and with chondrocyte resistance to insulin-like growth factor 1. Arthritis Rheum 46: 2349-2357.
4Carlo MD Jr, Loeser RF (2003) Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum 48: 3419-3430.
5Yudoh K, Nguyen vT, Nakamura H, Hongo-Masuko K, Kato T, et al. (2005) Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res Ther 7: R380-391
6Henrotin YE, Bruckner P, Pujol JP (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11: 747-755.
7DelCarlo M, Loeser RF (2006) Chondrocyte cell death mediated by reactive oxygen species-dependent activation of PKC-betaI. Am J Physiol Cell Physiol 290: C802-811.
8Kurz B, Lemke A, Kehn M, Domm C, Patwari P, et al. (2004) Influence of tissue maturation and antioxidants on the apoptotic response of articular cartilage after injurious compression. Arthritis Rheum 50: 123-130.
9Kurz B, Lemke AK, Fay J, Pufe T, Grodzinsky AJ, et al. (2005) Pathomechanisms of cartilage destruction by mechanical injury. Ann Anat 187: 473-485.
10Green DM, Noble PC, Ahuero JS, Birdsall HH (2006) Cellular events leading to chondrocyte death after cartilage impact injury. Arthritis Rheum 54: 1509-1517.
11Martin JA, Buckwalter JA (2002) Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology 3: 257-264.
12Martin JA, Buckwalter JA (2001) Telomere erosion and senescence in human articular cartilage chondrocytes. J Gerontol A Biol Sci Med Sci 56: B172-179.
13Martin JA, Buckwalter JA (2001) Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop J 21: 1-7.
14Yudoh K, Shishido K, Murayama H, Yano M, Matsubayashi K, et al. (2007) Water-soluble C60 fullerene prevents degeneration of articular cartilage in osteoarthritis via down-regulation of chondrocyte catabolic activity and inhibition of cartilage degeneration during disease development. Arthritis Rheum 56: 3307-3318.
15Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493-501.
16Sanz A, Stefanatos RK (2008) The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci 1: 10-21.
17Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF (1991) Radical reactions of c60. Science 254: 1183-1185.
18Toniolo C, Bianco A, Maggini M, Scorrano G, Prato M, et al. (1994) A bioactive fullerene peptide. J Med Chem 37: 4558-4562.
19Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, et al. (2001) Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 7: 243-246.
20Xiao L, Takada H, Maeda K, Haramoto M, Miwa N (2005) Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed Pharmacother 59: 351-358.
21Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, et al. (2005) [C60] Fullerene is a Powerful Antioxidant in Vivo with No Acute or Subacute Toxicity. Nano Lett 5: 2578-2585.
22Yui N, Yoshioka H, Fujiya H, Musha H, Beppu M, et al. (2014) The DNA Repair Enzyme Apurinic/Apyrimidinic Endonuclease (Apex Nuclease) 2 Has the Potential to Protect against Down-Regulation of Chondrocyte Activity in Osteoarthritis. Int J Mol Sci 15:14921-14934.
23Georgiadis MM, Luo M, Gaur RK, Delaplane S, Li X, et al. (2008) Evolution of the redox function in mammalian apurinic/apyrimidinic endonuclease. Mutat Res 643: 54-63.
24Willis J, Patel Y, Lentz BL, Yan S (2013) APE2 is required for ATR-Chk1 checkpoint activation in response to oxidative stress. Proc Natl Acad Sci U S A 110: 10592-10597.