1Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine absorbed at a silver electrode. Chem Phys Lett 26: 163–166.
2Mathieu LJ, Maurizio R, Quidant R (2011) Plasmon nano-optical tweezers. Nature Photonics 5: 349–356.
3Soukoulis CM, Wegener M (2010) Optical metamaterials - more bulky and less lossy. Science 330: 1633–1634.
4Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331: 290–291.
5Yudan Hu, Li Chen, Kun Liu, Jianwen Xiong (2012) Fluorescence Properties of CdSe Quantum Dots Capped by ZnS. Advances in biomedical engineering 9.
6Zhang J, Zhang L (2012) Nanostructures for surface plasmons. Adv Opt Photonics 4: 157-321.
7Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115: 8706–8715.
8Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, et al. (1997) (CdSe)ZnS Core−Shell Quantum Dots:  Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J Phys Chem B 101: 9463–9475.
9Hines MA, Guyot-Sionnest P (1996) Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSeNanocrystals. J Phys Chem 100: 468–471.
10Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J Am Chem Soc 119: 7019–7029.
11Gao M, Kirstein S, M¨ohwald H, Rogach AL, Kornowski A, et al. (1998) Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification. J Phys Chem B 102: 8360–8363.
12 Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33: 27-36.
13Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, et al. (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294: 1901-1903.
14Chen S, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters 2: 1003–1007.
15Pastoriza-Santos I, Liz-Marz´an LM (2002) Synthesis of Silver Nanoprisms in DMF. Nano Letters 2: 903–905.
16Sun Y, Mayers B, Xia Y (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters 3: 675–679.
17Yang J, Fendler JH (1995) Morphology control of pbs nanocrystallites, epitaxially grown under mixed monolayers. J Phys Chem 99: 5505–5511.
18Jin R, Cao Y, Hao E, Metraux G, Schatz GC, et al. (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425: 487–490.
19Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15: 414–416.
20Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC (1999) The shape transition of gold nanorods. Langmuir 15: 701–709.
21Chemseddine A, Moritz T (1999) Nanostructuring titania: control over nanocrystal structure, size, shape and organization. Eur J Inorg Chem: 235–245.
22 Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun: 617–618.
23Kim F, Song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc124: 14316–14317.
24Tang Z, Kotov NA, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297: 237-240.
25Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, et al. (2003) One-dimensional nanostructures: synthesis, characterization and applications. Adv Mater15: 353–389.
26Yu Y, Chang S, Lee C, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101: 6661–6664.
27Oldenburg SJ, Jackson JB, Westcott SL, Halas NJ (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75: 2897–2899.
28Jackson JB, Halas NJ (2001) Silver nanoshells:  variations in morphologies and optical properties. J Phys Chem B 105: 2743–2746.
29 Graf C, Blaaderen AV (2002) Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 18: 524–534.
30Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288: 243–247.
31 Jin Y, Dong S (2003) One-pot synthesis and characterization of novel silver-gold bimetallic nanostructures with hollow interiors and bearing nanospikes. J Phys Chem B 107: 12902–12905.
32Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater 2: 382–385.
33Manna L, Scher EC, Alivisatos AP (2000) Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped cdsenanocrystals. J Am Chem Soc 122: 12700–12706.
34Hao E, Bailey RC, Schatz GC, Hupp JT, Li S (2004) Synthesis and optical properties of "branched" gold nanocrystals. Nano Letters 4: 327–330.
35 Chen S, Fan Z, Carroll DL (2002) Silver nanodisks:  synthesis, characterization, and self-assembly. J Phys Chem B 106: 10777–10781.
36Hao E, Kelly KL, Hupp JT, Schatz GC (2002) Synthesis of silver nanodisks using polystyrene mesospheres as templates. J Am Chem Soc 124: 15182–15183.
37Maillard M, Giorgio S, Pileni MP (2002) Silver nanodisk. Adv Mater 14: 1084–1086.
38Puntes VF, Zanchet D, Erdonmez CK, Alivisatos AP (2002) Synthesis of hcp-Co nanodisks. J Am Chem Soc 124: 12874–12880.
39Maillard M, Huang P, Brus L (2003) Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [ag+]'. Nano Letters 3: 1611–1615.
40Murphy CJ (2002) Materials science. Nanocubes and nanoboxes. Science 298: 2139-2141.
41Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298: 2176-2179.
42 Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272: 1924-1926.
43Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35: 209-217.
44Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22: 32-41.
45Wurtz GA, Dickson W, O'Connor D, Atkinson R, Hendren W, et al. (2008) Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime. Opt Express 16: 7460-7470.
46Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, New York.
47Krenn JR, Schider G, Rechberger W, Lamprecht B, Leitner A, et al. (2000) Design of multipolar plasmon excitations in silver nanoparticles. Appl Phys Lett 77: 3379–3381.
48Laurent G, Félidj N, Aubard J, Lévi G, Krenn JR, et al. (2005) Surface enhanced Raman scattering arising from multipolar plasmon excitation. J Chem Phys 122: 11102.
49Payne EK, Shuford KL, Park S, Schatz GC, Mirkin CA (2006) Multipole plasmon resonances in gold nanorods. J Phys Chem B 110: 2150-2154.
50 Radloff C, Halas NJ (2004) Plasmonic properties of concentric nanoshells. Nano Lett 4: 1323–1327.
51Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82: 2257–2298.
52Luk'yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, et al. (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9: 707-715.
53Fan JA, Wu C, Bao K, Bao J, Bardhan R, et al. (2010) Self-assembled plasmonic nanoparticle clusters. Science 328: 1135-1138.
54Kawata S, Inouye Y, Verma P (2009) Plasmonics for near-field nano-imaging and superlensing. Nat Photonics 3: 388–394.
55 Nie S, Emory SR (1997) Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 275: 1102-1106.
56Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, et al. (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78: 1667–1670.
57Kneipp K, Moskovits M, Kneipp H (2006) Physics and Applications. Kneipp K, Moskovits M, Kneipp H (eds) Surface-enhanced Raman scattering. Springer, Berlin.
58M¨uhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308: 1607–1609.
59Danckwerts M, Novotny L (2007) Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett 98: 026104.
60Bouhelier A, Beversluis MR, Novotny L (2003) Characterization of nanoplasmonic structures by locally excited photoluminescence. Appl Phys Lett 83: 5041–5043.
61Ghenuche P, Cherukulappurath S, Taminiau TH, van Hulst NF, Quidant R (2008) Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys Rev Lett 101: 116805.
62Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, et al. (2009) Plasmon lasers at deep subwavelength scale. Nature 461: 629-632.
63Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, et al. (2007) Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450: 402-406.
64Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, et al. (2009) Demonstration of a spaser-based nanolaser. Nature 460: 1110-1112.
65Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445: 39-46.
66Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66: 163–182 .
67García-Vidal FJ, Lezec HJ, Ebbesen TW, Martín-Moreno L (2003) Multiple paths to enhance optical transmission through a single subwavelength slit. Phys Rev Lett 90: 213901.
68Wang Y, Huang CJ, Jonas U, Wei T, Dostalek J, et al. (2010) Biosensor based on hydrogel optical waveguide spectroscopy. Biosens Bioelectron 25: 1663-1668.
69Schuller JA, Barnard ES, Cai W, Jun YC, White JS, et al. (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9: 193-204.
70Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98: 266802.
71 Bryant GW, García de Abajo FJ, Aizpurua J (2008) Mapping the plasmon resonances of metallic nanoantennas. Nano Lett 8: 631-636.
72Søndergaard T, Bozhevolnyi SI (2007) Slowplasmon resonant nanostructures: Scattering and field enhancements. Phys Rev B 75: 073402.
73Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9: 205-213.
74Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93: 191113.
75Tang L, Kocabas SE, Latif S, Okyay AK, Ly-Gagnon D-S, et al. (2008) Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat Photonics 2: 226-229.
76Cao L, Park JS, Fan P, Clemens B, Brongersma ML (2010) Resonant germanium nanoantenna photodetectors. Nano Lett 10: 1229-1233.
77Cubukcu E, Kort EA, Crozier KB, Capasso F (2006) Plasmonic laser antenna. Appl Phys Lett 89: 093120.
78Pillai S, Catchpole K, Trupke T, Green M (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101: 093105.
79Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, et al. (2008) Biosensing with plasmonic nanosensors. Nature Mater 7: 442-453.
80De Wilde Y, Formanek F, Carminati R, Gralak B, Lemoine PA, et al. (2006) Thermal radiation scanning tunnelling microscopy. Nature 444: 740-743.
81Schuller JA, Taubner T, Brongersma ML (2009) Optical antenna thermal Emitters. Nat Photonics 3: 658–661.
82Novotny L, Stranick SJ (2006) Near-field optical microscopy and spectroscopy with pointed probes. Annu Rev Phys Chem 57: 303-331.
83Mühlschlegel P, Eisler HJ, Martin OJ, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308: 1607-1609.
84Taminiau TH, Moerland RJ, Segerink FB, Kuipers L, van Hulst NF (2007) Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett 7: 28-33.
85Ghenuche P, Cherukulappurath S, Taminiau TH, van Hulst NF, Quidant R (2008) Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys Rev Lett 101: 116805.
86 Anika Kinkhabwala, Zongfu Yu, Shanhui Fan, Yuri Avlasevich, Klaus Müllen, et al. (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 3: 654-657.
87Kalkbrenner T, Håkanson U, Schädle A, Burger S, Henkel C, et al. (2005) Optical microscopy via spectral modifications of a nanoantenna. Phys Rev Lett 95: 200801.
88Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96: 113002.
89Novotny L, van Hulst N (2011) Antennas for light. Nat photonics 5: 83-90.
90White JS, Veronis G, Yu Z, Barnard ES, Chandran A, et al. (2009) Extraordinary optical absorption through subwavelength slits. Opt Lett 34: 686-688.
91Veronis G, Fan S (2007) Surface plasmon nanophotonics. Brongersma ML, Kik PG (eds) Surface plasmon nanophotonics 131. Springer, Berlin.
92 Zia R, Selker MD, Catrysse PB, Brongersma ML (2004) Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A Opt Image Sci Vis 21: 2442-2446.
93Hess O, Pendry JB, Maier SA, Oulton RF, Hamm JM, et al. (2012) Active nanoplasmonic metamaterials. Nat Mater 11: 573-584.
94 Xu T, Zhao Y, Ma J, Wang C, Cui J, et al. (2008) Sub-diffraction-limited interference photolithography with metamaterials. Opt Express 16: 13579-13584.
95Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, et al. (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314: 977-980.
96Bulu I, Caglayan H, Aydin K, Ozbay E (2005) Compact size highly directive antennas based on the SRR metamaterial medium. New J Phys 7: 223.
97 Leonhardt U, Philbin TG (2007) Quantum levitation by left-handed metamaterials. New J Phys 9: 254.
98Nikolajsen T, Leosson K, Bozhevolnyi SI (2004) Surface plasmonpolariton modulators and switches operating at telecom wavelengths. Appl Phys Lett 85: 5833–5835.
99Pala RA, Shimizu KT, Melosh NA, Brongersma ML (2008) A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett 8: 1506-1510.
100 Dintinger J, Robel I, Kamat PV, Genet C, Ebbesen TW (2006) Terahertz all-optical molecule-plasmon modulation. Adv Mater 18: 1645–1648.
101 Dicken MJ, Sweatlock LA, Pacifici D, Lezec HJ, Bhattacharya K, et al. (2008) Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett 8: 4048-4052.
102 MacDonald KF, Sámson ZL, Stockman MI, Zheludev NI (2009) Ultrafast active plasmonics. Nat Photonics 3: 55–58.
103Nitzan A, Brus LE (1981) Theoretical model for enhanced photochemistry on rough surfaces. J Chem Phys 75: 2205–2214.
104Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, et al. (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100: 13549-13554.
105Sershen SR, Westcott SL, Halas NJ, West JL (2000) Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 51: 293-298.
106 Reismann M, Bretschneider JC, von Plessen G, Simon U (2008) Reversible photothermal melting of DNA in DNA-gold-nanoparticle networks. Small 4: 607-610.
107Stehr J, Hrelescu C, Sperling RA, Raschke G, Wunderlich M, et al. (2008) Gold nanostoves for microsecond DNA melting analysis. Nano Lett 8: 619-623.
108Cao L, Barsic DN, Guichard AR, Brongersma ML (2007) Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett 7: 3523-3527.
109Boyd DA, Adleman JR, Goodwin DG, Psaltis D (2008) Chemical separations by bubble-assisted interphase mass-transfer. Anal Chem 80: 2452-2456.
110Rontzsch L, Heinig KH, Schuller JA, Brongersma ML (2007) Thin film patterning by surface-plasmon-induced thermocapillarity. Appl Phys Lett 90: 044105.
111 Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, et al. (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1: 84–90.
112Soares BF, Jonsson F, Zheludev NI (2007) All-optical phase-change memory in a single gallium nanoparticle. Phys Rev Lett 98: 153905.
113Baffou G, Quidant R, Girard C (2009) Heat generation in plasmonic nanostructures: influence of morphology. Appl Phys Lett 94: 153109.
114Baffou G, Kreuzer MP, Kulzer F, Quidant R (2009) Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt Express 17: 3291-3298.