1G. Moore (1965) Cramming more components onto integrated circuits. Electronics 38: 08.
2S. R. Hofstein, F. P. Heiman (1963) The silicon insulated-gate field-effect transistor. Proceedings of the IEEE. 51: 1190-1202
3E. J. Nowak (2013) Advanced CMOS Scaling and FinFET Technology. ECS Transactions. 9: 3-16.
4 International Roadmap Committee (IRC)(2012)International Technology Roadmap for Semiconductors
5W. Fang, Li S-S, Cheng C-L, Chang C-I, Chen W-C, et al. (2013) CMOS MEMS: A key technology towards the "More than Moore" era. The 17th International Conference on Solid-State Sensors. Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). 2513-2518.
6R. P. Feynman (1960) There's plenty of room at the bottom. Engineering and Science 23: 22-36.
7 Luigi Atzori a, Antonio Iera, and Giacomo Morabito (2010) The internet of things: A survey Computer Networks 54: 2787-2805.
8 Yablonovitch, E. (1987) Inhibited spontaneous emission in solid-state physics and electronics. Physics Review Letters. 58: 2059-2062.
9Luo C, Johnson S G, Joannopoulos J D, Pendry J. B (2002) All-angle negative refraction without negative effective index. Physical Review. 65: 1-4.
10P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar (2003) Photonic crystals: Imaging by flat lens using negative refraction. Nature. 426: 404.
11Kosaka H, Kaashima T, Tomita A, Notomi M, Tamamura T, et al. (1998) Superprism phenomena in photonic crystals. Phyical Review. 58: 10096-10099.
12Chow E, Hietala, Joannopoulos, Lin S, Villeneuve P.R (1993) Experimental Demonstration of Guiding and Beding of Electromagnetic Waves in a Photonic Crystal. Science 8: 928-934.
13Vlasov YA, O'Boyle M, Hamann HF, McNab SJ (2005) Active control of slow light on a chip ith photonic crystal aveguides. Nature. 438: 65-69.
14Tinker M, Lee JB (2005) Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency. Optics Express 13: 7174-7188.
15Yonghao Cui, V. A. Tamma, Won Park, and J.-B. Lee (2010) Mechanically tunable negative-index photonic crystal lens. IEEE Photonics Journal. 6: 1003-1012.
16Vlasov, Yurii A (2012) Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G. Communications Magazine, IEEE 50: 67-72.
17Michael D. Dickey, Ryan C. Chiechi, Ryan J. Larsen, Emily A. Weiss1, David A. Weitz, et al. (2008) Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature. Advanced Functional Materials. 18: 1097-1104.
18Galinstan fluid (2002) Galinstan Safety Data Sheet.
19Tingyi Liu, Prosenjit Sen, and Chang-Jin (2012) Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices. Microelectromechanical Systems, Journal of Microelectromechanical Systems. 21: 443-450.
20Kun-Quan Ma and Jing Liu (2007) Heat-driven liquid metal cooling device for the thermal management of a computer chip. Journal of Physics D: Applied Physics. 40: 4722
21/span>Hallfors N, Khan A, Dickey MD, Taylor AM (2013) Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform. Lab on a Chip. 13: 522-526.
22Hyun-Joong Kim, Chulwoo Son, Babak Ziaie (2008) A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Applied Physics Letters. 92: 011904.
23Knoblauch M, Hibberd JM, Gray JC, van Bel AJ (1999) A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nat Biotech. 17: 906-909.
24Wasim Irshad and Dimitrios Peroulis (2009) A Silicon-Based Galinstan Magnetohydrodynamic Pump in PowerMEMS. 127-129.
25G. J. Hayes, Ju-Hee So, Qusba A, Dickey M.D, Lazzi G (2012) Flexible Liquid Metal Alloy (EGaIn) Microstrip Patch Antenna. Antennas and Propagation. 60: 2151-2156.
26Kubo M, Li X, Kim C, Hashimoto M, Wiley BJ, et al. (2010) Stretchable Microfluidic Radiofrequency Antennas. Advanced Materials. 22: 2749-2752
27Meng Li, Bin Yu, Behdad N (2010) Liquid-Tunable Frequency Selective Surfaces. Microwave and Wireless Components Letters, IEEE. 20: 423-425.
28Wenqi Hu, Ohta A.T, Shiroma W.A (2013) A reconfigurable, liquid-metal-based low-pass filter with reversible tuning in Wireless Symposium (IWS), 2013 IEEE International. 1-3.
29F. Scharmann, Cherkashinin V, Breternitz Ch, Knedlik G, Hartung, et al. (2004) Viscosity effect on GaInSn studied by XPS. Surface and Interface Analysis. 36: 981-985.
30D. Zrnic and D. S. Swatik (1969) On the resistivity and surface tension of the eutectic alloy of gallium and indium. Journal of the Less Common Metals. 18: 67-68.
31Kim D, Thissen P, Viner G, Lee DW, Choi W, et al. (2013) Recovery of Nonwetting Characteristics by Surface Modification of Gallium-Based Liquid Metal Droplets Using Hydrochloric Acid Vapor. ACS Applied Materials & Interfaces. 5: 179-185.
32Li G, Parmar M, Kim D, Lee JB, Lee DW (2014) PDMS Based Coplanar Microfluidic Channels for the Surface Reduction of oxidized Galinstan. Lab Chip. 14: 200 – 209.
33Daeyoung Kim, Dong-Weon Lee, Wonjae Choi, and J.-B. Lee (2013) A Super-Lyophobic 3D PDMS Channel as a Novel Microfluidic Platform to Manipulate Oxidized Galinstan. IEEE/ASME Journal of Microelectromechanical Systems. 22: 1267-1275.