1Chang CF, Hsu KH, Chiou SH, Ho LL, Fu YS, Hung SC (2008) Fibronectin and pellet suspension culture promote differentiation of human mesenchymal stem cells into insulin producing cells. J Biomed Mater Res A. 4:1097-105.
2Kim SJ, Choi YS, Ko ES, Lim SM, Lee CW, Kim DI. (2012) Glucose-stimulated insulin secretion of various mesenchymal stem cells after insulin-producing cell differentiation. J Biosci Bioeng.; 113(6):771-7.
3Czubak P, Bojarska-Junak A, Tabarkiewicz J, Putowski L. (2014) A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells. J Diabetes Res. 4:628591.
4Yang SF, Xue WJ, Duan YF, Xie LY, Lu WH, Zheng J, et.al. (2015) Nicotinamide Facilitates Mesenchymal Stem Cell Differentiation into Insulin-Producing Cells and Homing to Pancreas in Diabetic Mice. Transplant Proc. 6:2041-9.
5Xin Y, Jiang X, Wang Y, Su X, Sun M, Zhang L, et.al. (2016) Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia. PLoS One. 1: e0145838.
6Gabr MM, Zakaria MM, Refaie AF, Abdel-Rahman EA, Reda AM, Ali SS, Khater SM, et.al. (2017) From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells. Biomed Res Int. 7:3854232.
7Domouky AM, Hegab AS, Al-Shahat A, Raafat N. (2017) Mesenchymal stem cells and differentiated insulin producing cells are new horizons for pancreatic regeneration in type I diabetes mellitus. Int J Biochem Cell Biol. 87:77-85.
8Jafarian A, Taghikhani M, Abroun S, Pourpak Z, Allahverdi A, Soleimani M. (2014) Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells. Mol Biol Rep. 7:4783-94.
9Soria B. (2001) In-vitro differentiation of pancreatic beta-cells. Differentiation; 68:205–219.
10Xie QP, Huang H, Xu B, Dong X, Gao SL, Zhang B. (2009) Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation. 5:483-91.
11Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, et.al. (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 4:1135-40.
12Hyder A, Ehnert S, Fändrich F, Ungefroren H. (2018) Transfection of Peripheral Blood Monocytes with SOX2 Enhances Multipotency, Proliferation, and Redifferentiation into Neohepatocytes and Insulin-Producing Cells. Stem Cells Int. 4271875.
13Hyder A, Ehnert S, Hinz H, Nüssler AK, Fändrich F, Ungefroren H. (2012) EGF and HB-EGF enhance the proliferation of programmable cells of monocytic origin (PCMO) through activation of MEK/ERK signaling and improve differentiation of PCMO-derived hepatocyte-like cells. Cell Commun Signal. 1:23.
14Ungefroren H, Hyder A, Hinz H, Groth S, Lange H, El-Sayed KM, et.al. (2015) Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO): evidence for a regulatory role of autocrine activin and TGF-β. PLoS One. 2:e0118097.
15Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Dela Cruz F, et.al. (2000) Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development; 127(24):5533-40.
16Rezania A, Bruin JE, Xu J, Narayan K, Fox JK, O'Neil JJ. (2013) Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells; 11:2432-42.
17Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. (1997) The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature; 6623:399-402.
18Brink C, Chowdhury K, Gruss P. (2001) Pax4 regulatory elements mediate beta cell specific expression in the pancreas. Mech Dev. 1:37-43.
19Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB. (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 18:2323-34.
20Jin CX, Li WL, Xu F, Geng ZH, He ZY, Su J. (2008) Conversion of immortal liver progenitor cells into pancreatic endocrine progenitor cells by persistent expression of Pdx-1. J Cell Biochem. 1:224-36.
21Jensen J, Heller RS, Funder-Nielsen T, Pedersen EE, Lindsell C, Weinmaster G. (2000) Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes; 2:163-76.
22Gradwohl G, Dierich A, LeMeur M, Guillemot F. (2000) neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A. 4:1607-11.
23Wang S, Jensen JN, Seymour PA, Hsu W, Dor Y, Sander M. (2009) Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function. Proc Natl Acad Sci U S A. 24:9715-20.
24Kaneto H, Miyatsuka T, Shiraiwa T, Yamamoto K, Kato K, Fujitani Y. (2007) Crucial role of PDX-1 in pancreas development, beta-cell differentiation, and induction of surrogate beta-cells. Curr Med Chem. 16:1745-52.
25Sun J, Mao L, Yang H, Ren D. (2018) Critical role for the Tsc1-mTORC1 pathway in β-cell mass in Pdx1-deficient mice. J Endocrinol. 2:151-163.
26Kitano M, Kakinuma M, Takatori A, Negishi T, Ishii Y, Kyuwa S. (2006) Gene expression profiling of mouse embryonic stem cell progeny differentiated by Lumelsky's protocol. Cells Tissues Organs; 183(1):24-31.
27Qu, Y., S. Vadivelu, Choi L., Liu S., Lu A., Lewis B. (2003) Neurons derived from embryonic stem (ES) cells resemble normal neurons in their vulnerability to excitotoxic death. Exp Neurol. 184:326–336.
28Fijnvandraat, van Ginneken A.C., de Boer P.A., Ruijter J.M., Christoffels V.M. (2003) Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube. Cardiovasc Res. 58:399–409.
29Zhang L and Chan C. (2010) Isolation and Enrichment of Rat Mesenchymal Stem Cells (MSCs) and Separation of Single-colony Derived MSCss. J Vis Exp. 37:1852.
30Hyder A., Laue C. and Schrezenmeir J. (2010) Metabolic aspects of neonatal rat islet hypoxia tolerance. Transplant International, 1:80-9.
31Hyder A. 2019. PGlyRP3 concerts with PPARγ to attenuate DSS-induced colitis in mice. International Immunopharmacology 67:46-53.
32Tsirigotis M, Zhang M, Chiu RK, Wouters BG, Gray DA. (2001) Sensitivity of mammalian cells expressing mutant ubiquitin to protein-damaging agents. J. Biol. Chem. 49:46073–8.
33Pickart CM, Fushman D. (2004) Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 6:610–6.
34Ryu KY, Maehr R, Gilchrist CA, Long MA, Bouley DM, Mueller B, Ploegh HL, Kopito RR. (2007) The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO Journal. 11:2693–706.
35Manevich Y, Fisher AB. (2005) Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radic. Biol. Med. 11:1422–32.
36Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. (2007) Trends in oxidative aging theories. Free Radical Biol. Med. 4:477–503.
37Comino-Mendez I., Leandro-Garcia L.J., Montoya
G., Inglada-Perez L., de Cubas A.A., Curras-Freixes M. (2015)
Functional and in silico assessment of MAX variants of unknown
significance. J. Mol. Med. 93:1247-1255.
38Le Marchand SJ, Piston DW. (2010) Glucose suppression
of glucagon secretion: metabolic and calcium responses
from alpha-cells in intact mouse pancreatic islets. J Biol Chem.,
19:14389-98.